ESP-WROOM-32 Datasheet

Espressif Systems

March 9, 2017

About This Guide

This document provides introduction to the specifications of the ESP-WROOM-32 module.

The document structure is as follows:

Chapter	Title	Subject
Chapter 1	Preface	An overview of ESP-WROOM-32
Chapter 2	Pin Definitions	Device pinout and pin descriptions
Chapter 3	Functional Description	Description of major functional modules and protocols
Chapter 4	Electrical Characteristics	Electrical characteristics and specifications of ESP-WROOM-32
Chapter 5	Schematics	The schematics of ESP-WROOM-32
Chapter 6	Learning Resources	ESP32-related must-read materials and must-have resources

Release Notes

Date	Version	Release notes	
2016.08	V1.0	First release.	
2016.11	V1.1	Updated Chapter 5.	
2016.11	V1.2	Added Peripheral Schematics.	
2016.12	V1.3	Updated Section 2.1.	
		Updated Chapter 1;	
		Updated Chapter 2;	
		Updated Chapter 3;	
2017.03	V1.4	First release. Updated Chapter 5. Added Peripheral Schematics. Updated Section 2.1. Updated Chapter 1; Updated Chapter 2;	
2017.03	V1.4	Updated Table 4.4;	
		Updated Section 4.6;	
		Added Chapter Learning Resources;	
		Updated Table 3.	

Disclaimer and Copyright Notice

Information in this document, including URL references, is subject to change without notice. THIS DOCUMENT IS PROVIDED AS IS WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NON-INFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

All liability, including liability for infringement of any proprietary rights, relating to use of information in this document is disclaimed. No licenses express or implied, by estoppel or otherwise, to any intellectual property rights are granted herein. The Wi-Fi Alliance Member logo is a trademark of the Wi-Fi Alliance. The Bluetooth logo is a registered trademark of Bluetooth SIG.

All trade names, trademarks and registered trademarks mentioned in this document are property of their respective owners, and are hereby acknowledged.

Copyright © 2017 Espressif Inc. All rights reserved.

Contents

ГРгетасе	1
2 Pin Definitions	3
2.1 Pin Layout	3
2.2 Pin Description	4
2.3 Strapping Pins	5
3 Functional Description	6
3.1 CPU and Internal Memory	6
3.2 External Flash and SRAM	6
3.3 Crystal Oscillators	6
3.4 Power Consumption	7
3.5 Peripherals and Sensors	8
3.5.1 Peripherals and Sensors Description	8
3.5.2 Peripheral Schematics	13
4 Electrical Characteristics	14
4.1 Absolute Maximum Ratings	14
4.2 Recommended Operating Conditions	14
4.3 Digital Terminal Characteristics	14
4.4 Wi-Fi Radio	15
4.5 Bluetooth LE Radio	15
4.5.1 Receiver	15
4.5.2 Transmit	16
4.6 Reflow Profile	16
5 Schematics	17
6 Learning Resources	18
6.1 Must-Read Documents	18
6.2 Must-Have Resources	18

List of Tables

1	ESP-WROOM-32 Specifications	1
2	ESP-WROOM-32 Dimensions	3
3	ESP-WROOM-32 Pin Definitions	4
4	Strapping Pins	5
5	Power Consumption by Power Modes	7
6	Peripherals and Sensors Description	8
7	Absolute Maximum Ratings	14
8	Recommended Operating Conditions	14
9	Digital Terminal Characteristics	14
10	Wi-Fi Radio Characteristics	15
11	Receiver Characteristics - BLE	15
12	Transmit Characteristics - BLE	16
13	Reflow Profile	16

List of Figures

1	Top and Side View of ESP-WROOM-32	3
2	ESP-WROOM-32 Peripheral Schematics	13
3	ESP-WROOM-32 Schematics	17

1. Preface

ESP-WROOM-32 is a powerful, generic Wi-Fi+BT+BLE MCU module that targets a wide variety of applications, ranging from low-power sensor networks to the most demanding tasks, such as voice encoding, music streaming and MP3 decoding.

At the core of this module is the ESP32-D0WDQ6 chip*, which is designed to be scalable and adaptive. There are two CPU cores that can be individually controlled or powered, and the clock frequency is adjustable from 80 MHz to 240 MHz. The user may also power off the CPU and make use of the low-power coprocessor to constantly monitor the peripherals for changes or crossing of thresholds. ESP32 integrates a rich set of peripherals, ranging from capacitive touch sensors, Hall sensors, low-noise sense amplifiers, SD card interface, Ethernet, high speed SDIO/SPI, UART, I2S and I2C.

Note:

* For details on the part number of the ESP32 series, please refer to the document ESP32 Datasheet.

The integration of Bluetooth, Bluetooth LE and Wi-Fi ensures that a wide range of applications can be targeted, and that the module is future proof: using Wi-Fi allows a large physical range and direct connection to the internet through a Wi-Fi router, while using Bluetooth allows the user to conveniently connect to the phone or broadcast low energy beacons for its detection. The sleep current of the ESP32 chip is less than 5 μ A, making it suitable for battery powered and wearable electronics applications. ESP-WROOM-32 supports data rates of up to 150 Mbps, and 22 dBm output power at the PA to ensure the widest physical range. As such the chip does offer industry-leading specifications and the best performance for electronic integration, range, power consumption, and connectivity.

The operating system chosen for ESP32 is freeRTOS with LWIP; TLS 1.2 with hardware acceleration is built in as well. Secure (encrypted) over the air (OTA) upgrade is also supported, so that developers can continually upgrade their products even after their release.

Table 1 provides the specifications of ESP-WROOM-32.

Table 1: ESP-WROOM-32 Specifications

Categories	Items	Specifications	
	Standards	FCC/CE/IC/TELEC/KCC/SRRC/NCC	
		802.11 b/g/n/d/e/i/k/r (802.11n up to 150 Mbps)	
Wi-Fi	Protocols	A-MPDU and A-MSDU aggregation and 0.4 μ s	
		guard interval support	
	Frequency range	2.4 ~ 2.5 GHz	
	Protocols	Bluetooth v4.2 BR/EDR and BLE specification	
		NZIF receiver with -98 dBm sensitivity	
Bluetooth	Radio	Class-1, class-2 and class-3 transmitter	
		AFH	
	Audio	CVSD and SBC	

Categories	Items	Specifications	
		SD card, UART, SPI, SDIO, I2C, LED PWM, Motor	
	Module interface	PWM, I2S, I2C, IR	
	Module interface	GPIO, capacitive touch sensor, ADC, DAC, LNA	
		pre-amplier	
	On-chip sensor	Hall sensor, temperature sensor	
Hardware	On-board clock	40 MHz crystal	
	Operating voltage	2.2 ~ 3.6V	
	Operating current	Average: 80 mA	
	Operating temperature range	-40°C ~ 85°C *	
	Ambient temperature range	Normal temperature	
	Package size	18 mm x 25.5 mm x 2.8 mm	
	Wi-Fi mode	Station/SoftAP/SoftAP+Station/P2P	
	Security	WPA/WPA2/WPA2-Enterprise/WPS	
	Encryption	AES/RSA/ECC/SHA	
	Firmware upgrade	UART Download / OTA (via network) / download	
Software	Tilliwale upgrade	and write firmware via host	
	Software development	Supports Cloud Server Development / SDK for	
	Software development	custom firmware development	
	Network protocols	IPv4, IPv6, SSL, TCP/UDP/HTTP/FTP/MQTT	
	User configuration	AT instruction set, cloud server, Android/iOS app	

2. Pin Definitions

2.1 Pin Layout

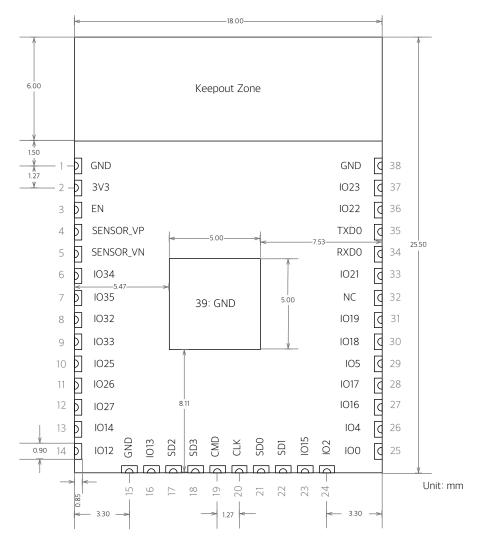


Figure 1: Top and Side View of ESP-WROOM-32

Table 2: ESP-WROOM-32 Dimensions

Length	Width	Height	PAD size (bottom)	Pin pitch	Shielding can height	PCB thickness
18 mm	25.5 mm	2.8 ± 0.1 mm	0.85 mm x 0.9 mm	1.27 mm	2 mm	$0.8 \pm 0.1 \text{ mm}$

2.2 Pin Description

ESP-WROOM-32 has 39 pins. See pin definitions in Table 3.

Table 3: ESP-WROOM-32 Pin Definitions

Name	No.	Туре	Function	
GND	1	Р	Ground	
3V3	2	Р	Power supply.	
EN	3	I	Chip-enable signal. Active high.	
SENSOR_VP	4	I	GPIO36, SENSOR_VP, ADC_H, ADC1_CH0, RTC_GPIO0	
SENSOR_VN	5	I	GPIO39, SENSOR_VN, ADC1_CH3, ADC_H, RTC_GPIO3	
IO34	6	I	GPIO34, ADC1_CH6, RTC_GPIO4	
IO35	7	I	GPIO35, ADC1_CH7, RTC_GPIO5	
IO32	8	I/O	GPIO32, XTAL_32K_P (32.768 kHz crystal oscillator input), ADC1_CH4, TOUCH9, RTC_GPIO9	
IO33	9	I/O	GPIO33, XTAL_32K_N (32.768 kHz crystal oscillator output), ADC1_CH5, TOUCH8, RTC_GPIO8	
IO25	10	1/0	GPIO25, DAC_1, ADC2_CH8, RTC_GPIO6, EMAC_RXD0	
IO26	11	1/0	GPIO26, DAC_2, ADC2_CH9, RTC_GPIO7, EMAC_RXD1	
IO27	12	1/0	GPIO27, ADC2_CH7, TOUCH7, RTC_GPIO17, EMAC_RX_DV	
IO14	13	I/O	GPIO14, ADC2_CH6, TOUCH6, RTC_GPIO16, MTMS, HSPICLK, HS2_CLK, SD_CLK, EMAC_TXD2	
IO12	14	I/O	GPIO12, ADC2_CH5, TOUCH5, RTC_GPIO15, MTDI, HSPIQ, HS2_DATA2, SD_DATA2, EMAC_TXD3	
GND	15	Р	Ground	
1012	10 1/0		GPIO13, ADC2_CH4, TOUCH4, RTC_GPIO14, MTCK, HSPID,	
IO13	16	I/O	HS2_DATA3, SD_DATA3, EMAC_RX_ER	
SHD/SD2	17	1/0	GPIO9, SD_DATA2, SPIHD, HS1_DATA2, U1RXD	
SWP/SD3	18	1/0	GPIO10, SD_DATA3, SPIWP, HS1_DATA3, U1TXD	
SCS/CMD	19	1/0	GPIO11, SD_CMD, SPICS0, HS1_CMD, U1RTS	
SCK/CLK	20	1/0	GPIO6, SD_CLK, SPICLK, HS1_CLK, U1CTS	
SDO/SD0	21	1/0	GPIO7, SD_DATA0, SPIQ, HS1_DATA0, U2RTS	
SDI/SD1	22	1/0	GPIO8, SD_DATA1, SPID, HS1_DATA1, U2CTS	
IO15	23	I/O	GPIO15, ADC2_CH3, TOUCH3, MTDO, HSPICSO, RTC_GPIO13, HS2 CMD, SD CMD, EMAC RXD3	
102	24	I/O	GPIO2, ADC2_CH2, TOUCH2, RTC_GPIO12, HSPIWP, HS2_DATA0, SD_DATA0	
100	25	I/O	GPIO0, ADC2_CH1, TOUCH1, RTC_GPIO11, CLK_OUT1, EMAC_TX_CLK	
IO4	26	I/O	GPIO4, ADC2_CH0, TOUCH0, RTC_GPIO10, HSPIHD, HS2_DATA1, SD_DATA1, EMAC_TX_ER	
IO16	27	1/0	GPIO16, HS1_DATA4, U2RXD, EMAC_CLK_OUT	
IO17	28	1/0	GPIO17, HS1_DATA5, U2TXD, EMAC_CLK_OUT_180	
IO5	29	1/0	GPIO5, VSPICS0, HS1_DATA6, EMAC_RX_CLK	
IO18	30	I/O	GPIO18, VSPICLK, HS1_DATA7	
IO19	31	I/O	GPIO19, VSPIQ, U0CTS, EMAC_TXD0	

Name	No.	Туре	Function	
NC	32	-	-	
IO21	33	I/O	GPIO21, VSPIHD, EMAC_TX_EN	
RXD0	34	I/O	GPIO3, U0RXD, CLK_OUT2	
TXD0	35	I/O	GPIO1, U0TXD, CLK_OUT3, EMAC_RXD2	
IO22	36	I/O	GPIO22, VSPIWP, U0RTS, EMAC_TXD1	
IO23	37	I/O	GPIO23, VSPID, HS1_STROBE	
GND	38	Р	Ground	
GND	39	Р	Ground	

2.3 Strapping Pins

ESP32-D0WDQ6 has five strapping pins. Software can read the value of these five bits from the register "GPIO_STRAPPING". During the chip power-on reset, the latches of the strapping pins sample the voltage level as strapping bits of "0" or "1", and hold these bits until the chip is powered down or shut down.

Each strapping pin is connected with its internal pull-up/pull-down during the chip reset. Consequently, if a strapping pin is unconnected or the connected external circuit is high-impedence, the internal weak pull-up/pull-down will determine the default input level of the strapping pins.

To change the strapping bit values, users can apply the external pull-down/pull-up resistances, or apply the host MCU's GPIOs to control the voltage level of these pins when powering ESP32 on.

After reset, the strapping pins work as the normal functions pins.

Refer to Table 4 for detailed boot modes of configuration by strapping pins.

Table 4: Strapping Pins

	Voltage of Internal LDO (VDD_SDIO)							
Pin	Default	3.	3V	1.8V				
MTDI	Pull-down	()	-	1			
			Booting Mode					
Pin	Default	SPI Flas	sh Boot	Downlo	ad Boot			
GPI00	Pull-up	-	1	()			
GPIO2	Pull-down	Don't	i-care	0				
		Debugging	g Log on UOTXD During	Booting				
Pin	Default	U0TXD	Toggling	UOTXE) Silent			
MTDO	Pull-up	-	1	()			
			Timing of SDIO Slave					
Pin	Default	Falling-edge Input	Falling-edge Input	Rising-edge Input	Rising-edge Input			
ГШ	Delault	Falling-edge Output	Rising-edge Output	Falling-edge Output	Rising-edge Output			
MTDO	Pull-up	0 0		1	1			
GPIO5	Pull-up	0 1		0	1			

Note:

Firmware can configure register bits to change the settings of "Voltage of Internal LDO (VDD_SDIO)" and "Timing of SDIO Slave" after booting.

3. Functional Description

This chapter describes the modules and functions integrated in ESP-WROOM-32.

3.1 CPU and Internal Memory

ESP32-DOWDQ6 contains two low-power Xtensa® 32-bit LX6 microprocessors. The internal memory includes:

- 448 KB of ROM for booting and core functions.
- 520 KB of on-chip SRAM for data and instruction.
- 8 KB of SRAM in RTC, which is called RTC SLOW Memory and can be accessed by the co-processor during the Deep-sleep mode.
- 8 KB of SRAM in RTC, which is called RTC FAST Memory and can be used for data storage; it is accessed
 by the main CPU during RTC Boot from the Deep-sleep mode.
- 1 kbit of eFuse, of which 256 bits are used for the system (MAC address and chip configuration) and the remaining 768 bits are reserved for customer applications, including Flash-Encryption and Chip-ID.

3.2 External Flash and SRAM

ESP32-DOWDQ6 supports up to four 16-MB external QSPI flash and SRAM with hardware encryption based on AES to protect developer's programs and data.

ESP32 can access the external QSPI flash and SRAM through high-speed caches.

- Up to 16 MB of external flash are memory-mapped onto the CPU code space, supporting 8, 16 and 32-bit access. Code execution is supported.
- Up to 8 MB of external flash/SRAM are memory-mapped onto the CPU data space, supporting 8, 16 and 32-bit access. Data-read is supported on the flash and SRAM. Data-write is supported on the SRAM.

ESP-WROOM-32 integrates 4 MB of external SPI flash. The 4-MB SPI flash can be memory-mapped onto the CPU code space, supporting 8, 16 and 32-bit access. Code execution is supported.

3.3 Crystal Oscillators

The frequencies of the main crystal oscillator supported include 40 MHz, 26 MHz and 24 MHz. The accuracy of crystal oscillators applied should be ± 10 PPM, and the operating temperature ranges from -40°C to 85°C.

When using the downloading tools, remember to select the right crystal oscillator type. In circuit design, capacitors C1 and C2 that connect to the earth are added to the input and output terminals of the crystal oscillator, respectively. The values of the two capacitors can be flexible, ranging from 6 pF to 22 pF. However, the specific capacitive values of C1 and C2 depend on further tests and adjustments of the overall performance of the whole circuit. Normally, the capacitive values of C1 and C2 are within 10 pF when the crystal oscillator frequency is 26 MHz, or 10 pF<C1 and C2<22 pF when the crystal oscillator frequency is 40 MHz.

The frequency of the RTC crystal oscillator is typically 32 kHz or 32.768 kHz. The accuracy can be out of the range of ±20 PPM, when the internal calibration is applied to correct the frequency offset. When the chip operates in

low-power modes, the application chooses the external low-speed (32 kHz) crystal clock, rather than the internal RC oscillators, to achieve the accurate wakeup time.

3.4 Power Consumption

With the advanced power management technology, ESP32-D0WDQ6 can switch between different power modes as follows:

Power mode

- Active mode: chip radio is powered on. The chip can receive, transmit, or listen.
- Modem-sleep mode: the CPU is operational and the clock is configurable. Wi-Fi / Bluetooth baseband and radio are disabled.
- Light-sleep mode: the CPU is paused. The RTC and ULP-coprocessor are running. Any wake-up events (MAC, host, RTC timer, or external interrupts) will wake up the chip.
- Deep-sleep mode: Only RTC is powered on. Wi-Fi and Bluetooth connection data are stored in RTC memory. The ULP-coprocessor can work.
- Hibernation mode: The internal 8MHz oscillator and ULP-coprocessor are disabled. The RTC recovery memory is powered down. Only one RTC timer on the slow clock and some RTC GPIOs are active.
 The RTC timer or the RTC GPIOs can wake up the chip from the Hibernation mode.

• Sleep Pattern

- Association sleep pattern: The power mode switches between the active mode and Modem-sleep/Light-sleep mode during this sleep pattern. The CPU, Wi-Fi, Bluetooth, and radio wake up at pre-determined intervals to keep Wi-Fi / BT connections on.
- ULP sensor-monitored pattern: The main CPU is in the Deep-sleep mode. The ULP co-processor does sensor measurements and wakes up the main system, based on the measured data from sensors.

The power consumption varies with different power modes/sleep patterns, and work status, of functional modules (see Table 5).

Power mode Comment Power consumption Wi-Fi Tx packet 13 dBm ~ 21 dBm 160 ~ 260 mA Wi-Fi / BT Tx packet 0 dBm 120 mA Wi-Fi / BT Rx and listening 80 ~ 90 mA Active mode (RF working) Association sleep pattern (by Light-0.9 mA@DTIM3, 1.2 mA@DTIM1 sleep) Max speed: 20 mA The CPU is powered on. Normal: 5 ~ 10 mA Modem-sleep mode Slow speed: 3 mA Light-sleep mode 0.8 mA The ULP-coprocessor is powered on. 0.15 mA ULP sensor-monitored pattern 25 μA @1% duty Deep-sleep mode RTC timer + RTC memories $20 \mu A$ Hibernation mode RTC timer only $5 \mu A$

Table 5: Power Consumption by Power Modes

3.5 Peripherals and Sensors

3.5.1 Peripherals and Sensors Description

Table 6: Peripherals and Sensors Description

Interface	Signal	Pin	Function		
	ADC1_CH0	SENSOR_VP			
	ADC1_CH3	SENSOR_VN			
	ADC1_CH4	IO32			
	ADC1_CH5	IO33			
	ADC1_CH6	IO34			
	ADC1_CH7	IO35			
	ADC2_CH0	IO4			
ADC	ADC2_CH1	IO0	Two 12-bit SAR ADCs		
	ADC2_CH2	102			
	ADC2_CH3	IO15			
	ADC2_CH4	IO13			
	ADC2_CH5	IO12			
	ADC2_CH6	IO14			
	ADC2_CH7	1027			
	ADC2_CH8	IO25			
	ADC2_CH9	IO26			
Ultra Low Noise	SENSOR_VP	IO36	Provides about 60dB gain by using larger		
Analog Pre-Amplifier	SENSOR_VN	IO39	capacitors on PCB		
DAC	DAC_1	IO25	- Two 8-bit DACs		
DAC	DAC_2	IO26	TWO 0-DIL DACS		
	TOUCH0	IO4			
	TOUCH1	IO0			
	TOUCH2	102			
	TOUCH3	IO15			
Touch Sensor	TOUCH4	IO13	Capacitive touch sensors		
	TOUCH5	IO12			
	TOUCH6	IO14			
	TOUCH7	IO27			
	TOUCH8	IO33			
	TOUCH9	IO32			
	HS2_CLK	MTMS			
	HS2_CMD	MTDO			
SD / SDIO / MMC	HS2_DATA0	IO2	Supports SD memory card V3.01 standard		
Host Controller	HS2_DATA1	IO4	Oupports of memory card vs.or standard		
	HS2_DATA2	MTDI			
	HS2_DATA3	MTCK			

Interface	Signal	Pin	Function	
	PWM0_OUT0~2			
	PWM1_OUT_IN0~2		Three channels of 16-bit timers generate	
	PWM0_FLT_IN0~2		PWM waveforms; each has a pair of	
Motor PWM	PWM1_FLT_IN0~2	Any GPIO	output signals. Three fault detection	
IVIOLOT I VVIVI	PWM0_CAP_IN0~2		signals. Three even capture signals. Three	
	PWM1_CAP_IN0~2		sync signals.	
	PWM0_SYNC_IN0~2			
	PWM1_SYNC_IN0~2			
LED PWM	ledc_hs_sig_out0~7	Any GPIO	16 independent channels @80MHz	
LLD F VVIVI	ledc_ls_sig_out0~7	Any GFIO	clock/RTC CLK. Duty accuracy: 16 bits.	
	U0RXD_in			
	U0CTS_in			
	U0DSR_in			
	U0TXD_out	Any GPIO		
	U0RTS_out			
	U0DTR_out			
UART	U1RXD_in		Two UART devices with hardware	
	U1CTS_in		flow-control and DMA	
	U1TXD_out			
	U1RTS_out			
	U2RXD_in			
	U2CTS_in			
	U2TXD_out			
	U2RTS_out			
	I2CEXT0_SCL_in			
	I2CEXT0_SDA_in			
	I2CEXT1_SCL_in			
I2C	I2CEXT1_SDA_in	Any GPIO	Two I2C devices in slave or master modes	
	I2CEXT0_SCL_out			
	I2CEXT0_SDA_out			
	I2CEXT1_SCL_out			
	I2CEXT1_SDA_out			

Interface	Signal	Pin	Function		
	I2S0I_DATA_in0~15				
	I2S0O_BCK_in				
	I2S00_WS_in				
	I2S0I_BCK_in				
	I2S0I_WS_in				
	I2S0I_H_SYNC				
	I2S0I_V_SYNC				
	I2S0I_H_ENABLE				
	I2S0O_BCK_out				
	I2S0O_WS_out				
	I2S0I_BCK_out				
	I2S0I_WS_out	Any GPIO	Ctores input and output from /to the oudin		
I2S	I2S0O_DATA_out0~23		Stereo input and output from/to the audio codec, and parallel LCD data output		
	I2S1I_DATA_in0~15		codec, and parallel LOD data output		
	I2S1O_BCK_in				
	12S10_WS_in				
	I2S1I_BCK_in				
	I2S1I_WS_in				
	I2S1I_H_SYNC				
	I2S1I_V_SYNC				
	I2S1I_H_ENABLE				
	I2S1O_BCK_out				
	I2S1O_WS_out				
	I2S1I_BCK_out				
	I2S1I_WS_out				
	I2S1O_DATA_out0~23				
Remote Controller	RMT_SIG_IN0~7	Any GPIO	Eight channels of IR transmitter and		
LIGITIOLE COLLUCIEI	RMT_SIG_OUT0~7		receiver for various waveforms		

Interface	Signal	Pin	Function
	SPIHD	SHD/SD2	
	SPIWP	SWP/SD3	
	SPICS0	SCS/CMD	
	SPICLK	SCK/CLK	
	SPIQ	SDO/SD0	
	SPID	SDI/SD1	
	HSPICLK	IO14	
	HSPICS0	IO15	Supports Standard SPI, Dual SPI, and
Parallel QSPI	HSPIQ	IO12	Quad SPI that can be connected to the
	HSPID	IO13	external flash and SRAM
	HSPIHD	IO4	
	HSPIWP	IO2	
	VSPICLK	IO18	
	VSPICS0	IO5	
	VSPIQ	IO19	
	VSPID	IO23	
	VSPIHD	IO21	
	VSPIWP	1022	
	HSPIQ_in/_out		Standard SPI consists of clock,
	HSPID_in/_out		chip-select, MOSI and MISO. These SPIs
	HSPICLK_in/_out		can be connected to LCD and other
	HSPI_CS0_in/_out		external devices. They support the
	HSPI_CS1_out		following features:
General Purpose	HSPI_CS2_out	Any GPIO	(a) both master and slave modes;
SPI	VSPIQ_in/_out		(b) 4 sub-modes of the SPI format transfer
	VSPID_in/_out		that depend on the clock phase (CPHA)
	VSPICLK_in/_out		and clock polarity (CPOL) control;
	VSPI_CS0_in/_out		(c) CLK frequencies by a divider;
	VSPI_CS1_out		(d) up to 64 bytes of FIFO and DMA.
	VSPI_CS2_out		
	MTDI	IO12	
JTAG	MTCK	IO13	JTAG for software debugging
3.7.0	MTMS	IO14	o te for continued dobugging
	MTDO	IO15	

Interface	Signal	Pin	Function
	SD_CLK	IO6	
	SD_CMD	IO11	SDIO interface that conforms to the
SDIO Slave	SD_DATA0	107	industry standard SDIO 2.0 card
ODIO Glave	SD_DATA1	IO8	specification.
	SD_DATA2	109	a opeomodiem.
	SD_DATA3	IO10	
	EMAC_TX_CLK	IO0	
	EMAC_RX_CLK	IO5	
	EMAC_TX_EN	IO21	
	EMAC_TXD0	IO19	
	EMAC_TXD1	IO22	
	EMAC_TXD2	IO14	
	EMAC_TXD3	IO12	
	EMAC_RX_ER	IO13	
	EMAC_RX_DV	1027	
EMAC	EMAC_RXD0	IO25	
	EMAC_RXD1	IO26	Ethernet MAC with MII/RMII interface
	EMAC_RXD2	TXD	
	EMAC_RXD3	IO15	
	EMAC_CLK_OUT	IO16	
	EMAC_CLK_OUT_180	IO17	
	EMAC_TX_ER	104	
	EMAC_MDC_out	Any GPIO	
	EMAC_MDI_in	Any GPIO	
	EMAC_MDO_out	Any GPIO	
	EMAC_CRS_out	Any GPIO	
	EMAC_COL_out	Any GPIO	

Note:

Functions of Motor PWM, LED PWM, UART, I2C, I2S, general purpose SPI and Remote Controller can be configured to any GPIO.

3.5.2 Peripheral Schematics

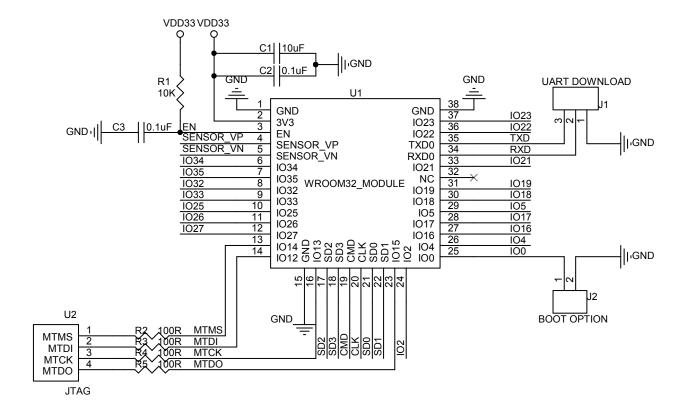


Figure 2: ESP-WROOM-32 Peripheral Schematics

Note:

The MTDI should be kept at low electric level.

4. Electrical Characteristics

Note:

The specifications in this chapter have been tested under the following general condition: $V_{BAT} = 3.3V$, $T_A = 27$ °C, unless otherwise specified.

4.1 Absolute Maximum Ratings

Table 7: Absolute Maximum Ratings

Rating	Condition	Value	Unit
Storage temperatue	-	-40 ~ 85	°C
Maximum soldering temperature	-	260	°C
Supply voltage	IPC/JEDEC J-STD-020	+2.2 ~ +3.6	V

4.2 Recommended Operating Conditions

Table 8: Recommended Operating Conditions

Operating condition	Symbol	Min	Тур	Max	Unit
Operating temperature	-	-40	20	85	°C
Supply voltage	VDD	2.2	3.3	3.6	V
Operating current	I_{VDD}	0.5	-	-	А

4.3 Digital Terminal Characteristics

Table 9: Digital Terminal Characteristics

Terminals	Symbol	Min	Тур	Max	Unit
Input logic level low	V_{IL}	-0.3	-	0.25VDD	V
Input logic level high	V_{IH}	0.75VDD	-	VDD+0.3	V
Output logic level low	V_{OL}	N	-	0.1VDD	V
Output logic level high	V_{OH}	0.8VDD	-	N	V

4.4 Wi-Fi Radio

Table 10: Wi-Fi Radio Characteristics

Description	Min	Тур	Max	Unit		
General Characteristics						
Input frequency	2412	-	2484	MHz		
Input impedance	-	50	-	Ω		
Input reflection	-	-	-10	dB		
Output power of PA	15.5	19.5	21.5	dBm		
	Sensitivity	,				
DSSS, 1 Mbps	-	-98	-	dBm		
CCK, 11 Mbps	-	-90	-	dBm		
OFDM, 6 Mbps	-	-93	-	dBm		
OFDM, 54 Mbps	-	-75	-	dBm		
HT20, MCS0	-	-93	-	dBm		
HT20, MCS7	-	-73	-	dBm		
HT40, MCS0	-	-90	-	dBm		
HT40, MCS7	-	-70	-	dBm		
MCS32	-	-91	-	dBm		
Ac	Adjacent Channel Rejection					
OFDM, 6 Mbps	-	37	-	dB		
OFDM, 54 Mbps	-	21	-	dB		
HT20, MCS0	-	37	-	dB		
HT20, MCS7	-	20	-	dB		

4.5 Bluetooth LE Radio

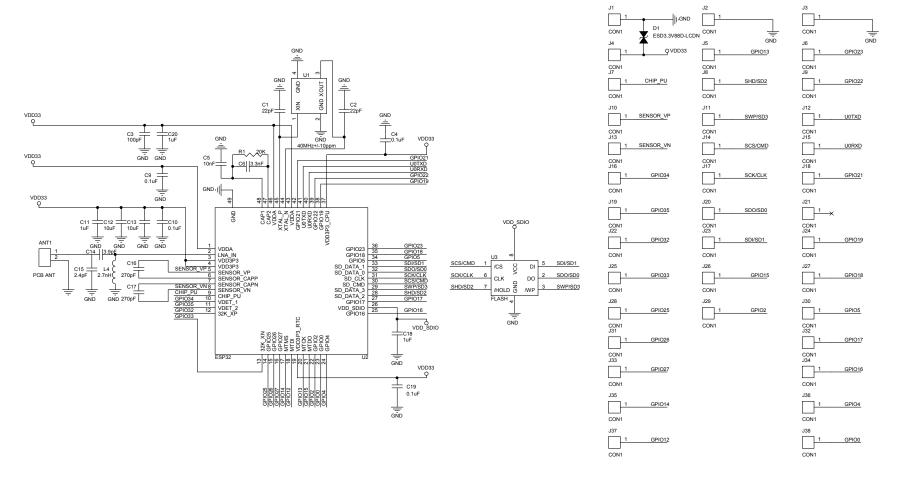
4.5.1 Receiver

Table 11: Receiver Characteristics - BLE

Parameter	Conditions	Min	Тур	Max	Unit
Sensitivity @0.1% BER	-	-	-98	-	dBm
Maximum received signal @0.1% BER	-	0	-	-	dBm
Co-channel C/I	-	-	+10	-	dB
	F = F0 + 1 MHz	-	-5	-	dB
	F = F0 - 1 MHz	-	-5	-	dB
Adjacent channel selectivity C/I	F = F0 + 2 MHz	-	-25	-	dB
	F = F0 - 2 MHz	-	-35	-	dB
	F = F0 + 3 MHz	-	-25	-	dB
	F = F0 - 3 MHz	-	-45	-	dB
	30 MHz - 2000 MHz	-10	-	-	dBm
Out-of-band blocking performance	2000 MHz - 2400 MHz	-27	-	-	dBm
	2500 MHz - 3000 MHz	-27	-	-	dBm
	3000 MHz - 12.5 GHz	-10	-	-	dBm
Intermodulation	-	-36	-	-	dBm

4.5.2 Transmit

Table 12: Transmit Characteristics - BLE


Parameter	Conditions	Min	Тур	Max	Unit
RF transmit power	-	-	+7.5	+10	dBm
RF power control range	-	-	25	-	dB
	F = F0 + 1 MHz	-	-14.6	-	dBm
	F = F0 - 1 MHz	-	-12.7	-	dBm
	F = F0 + 2 MHz	-	-44.3	-	dBm
Adjacent channel transmit power	F = F0 - 2 MHz	_	-38.7	-	dBm
Adjacent channel transmit power	F = F0 + 3 MHz	-	-49.2	-	dBm
	F = F0 - 3 MHz	-	-44.7	-	dBm
	F = F0 + > 3 MHz	-	-50	-	dBm
	F = F0 - > 3 MHz	-	-50	-	dBm
Δ f1 $_{avg}$	-	-	-	265	kHz
Δ f2 $_{max}$	-	247	-	-	kHz
Δ f2 $_{avg}$ / Δ f1 $_{avg}$	-	-	-0.92	-	-
ICFT	-	-	-10	-	kHz
Drift rate	-	-	0.7	-	kHz/50 μs
Drift	-	-	2	-	kHz

4.6 Reflow Profile

Table 13: Reflow Profile

Item	Value
T_s max to TL (Ramp-up Rate)	3°C/second max
Preheat	
Temperature Min. (T_s Min.)	150°C
Temperature Typ. (T_s Typ.)	175°C
Temperature Min. (T _s Max.)	200°C
Time (T_s)	60 ~ 180 seconds
Ramp-up rate (T_L to T_P)	3°C/second max
Time maintained above: $-$ Temperature (T_L) /Time (T_L)	217°C/60 ~ 150 seconds
Peak temperature (T_P)	260°C max, for 10 seconds
Target peak temperature (T _P Target)	260°C +0/-5°C
Time within 5°C of actual peak (t_P)	20 ~ 40 seconds
T_S max to T_L (Ramp-down Rate)	6°C/second max
Tune 25°C to Peak Temperature (t)	8 minutes max

5. Schematics

ĺΩ

SCHEMATICS

Figure 3: ESP-WROOM-32 Schematics

Note:

The capacitance of C1 and C2 varies with the selection of the crystal.

6. Learning Resources

6.1 Must-Read Documents

The following link provides related documents of ESP32.

• ESP32 Datasheet

This document provides introduction to the specifications of the ESP32 hardware, including overview, pin definitions, functional description, peripheral interface, electrical characteristics, etc.

ESP32 Technical Reference Manual

The manual provides detailed information on how to use the ESP32 memory and peripherals.

ESP32 Hardware Resources

The zip files include the schematics, PCB layout, Gerber and BOM list of ESP32-DevKitC.

• ESP32 Pin List

This list provides a quick reference guide of the IO MUX, Ethernet MAC, GIPO Matrix, and strapping pins of ESP32.

• ESP32 Hardware Design Guidelines

The guidelines outline recommended design practices when developing standalone or add-on systems based on the ESP32 series of products, including ESP32, the ESP-WROOM-32 module, and ESP32-DevKitC — the development board.

• ESP32 AT Instruction Set and Examples

This document introduces the ESP32 AT commands, explains how to use them and provides examples of several common AT commands.

6.2 Must-Have Resources

Here are the ESP32-related must-have resources.

• ESP32 BBS

This is an Engineer-to-Engineer (E2E) Community for ESP32 where you can post questions, share knowledge, explore ideas, and help solve problems with fellow engineers.

• ESP32 Github

ESP32 development projects are freely distributed under Espressif's MIT license on Github. It is established to help developers get started with ESP32 and foster innovation and the growth of general knowledge about the hardware and software surrounding ESP32 devices.

• ESP32 Tools

This is a web-page where users can download ESP32 Flash Download Tools and the zip file "ESP32 Certification and Test".

• ESP32 IDF

This web-page links users to the official IoT development framework for ESP32.

• ESP32 Resources

This webpage provides the links to all the available ESP32 documents, SDK and tools.