‘— AN5259
’l life.augmented

Application note

LSM6DSOX: Machine Learning Core

Introduction

This document is intended to provide information on the Machine Learning Core feature available in the LSM6DSOX. The
Machine Learning processing capability allows moving some algorithms from the application processor to the MEMS sensor,
enabling consistent reduction of power consumption.

The Machine Learning processing capability is obtained through decision-tree logic. A decision tree is a mathematical tool

composed of a series of configurable nodes. Each node is characterized by an “if-then-else” condition, where an input signal
(represented by statistical parameters calculated from the sensor data) is evaluated against a threshold.

The LSM6DSOX can be configured to run up to 8 decision trees simultaneously and independently. The decision trees are
stored in the device and generate results in the dedicated output registers.

The results of the decision tree can be read from the application processor at any time. Furthermore, there is the possibility to
generate an interrupt for every change in the result in the decision tree.

AN5259 - Rev 1 - January 2019 www.st.com

For further information contact your local STMicroelectronics sales office.

https://www.st.com/en/product/lsm6dsox

m ANS5259

Machine Learning Core in the LSM6DSOX

1 Machine Learning Core in the LSM6DSOX

The Machine Learning Core (together with the Finite State Machine) is one of the main embedded features
available in the LSM6DSOX. It is composed of a set of configurable parameters and decision trees able to
implement algorithms in the sensor itself.

The kind of algorithms suitable for the Machine Learning Core are those which can be implemented by following
an inductive approach, which involves searching patterns from observations. Some examples of algorithms which
follows this approach are: activity recognition, fitness activity recognition, motion intensity detection, vibration
intensity detection, carrying position recognition, context awareness, false positive rejection, etc...

The idea behind the Machine Learning Core is to use the accelerometer, gyroscope and external sensor data
(readable through the I12C master interface) to compute a set of statistical parameters selectable by the user (such
as mean, variance, energy, peak, zero crossing, efc...) in a defined time window. In addition to the sensor input
data, some new inputs can be defined by applying some configurable filters available in the device.

The Machine Learning Core parameters are called “Features” and can be used as input for a configurable
decision tree which can be stored in the device.

The decision tree which can be stored in the LSM6DSOX is a binary tree composed of a series of nodes. In each
node, a statistical parameter (feature) is evaluated against a threshold to establish the evolution in the next node.
When a leaf (one of the last nodes of the tree) is reached, the decision tree generates a result which is readable
through a dedicated device register.

Figure 1. Machine Learning Core in the LSM6DSOX

Magnitude
computation
Accelerometer data

Decision

Parameters

Gyroscope data
I>)C -Master data

(Features) Trees

Filters

- . . I2C/S
Configuration Registers « S

The Machine Learning Core output data rate can be configured among one of the four available rates from 12.5 to
104 Hz. The bits MLC_ODR in the embedded function register EMB_FUNC_ODR_CFG_C (60h) allow selecting
one of the four available rates as shown in the following table.

Table 1. Machine Learning Core output data rates

MLC_ODR bits in EMB_FUNC_ODR_CFG_C (60h) Machine Learning Core output data rate

00 12.5 Hz

01 26 Hz (default)
10 52 Hz

1 104 Hz

AN5259 - Rev 1 page 2/41

AN5259
Machine Learning Core in the LSM6DSOX

3

The machine learning processing capability of the LSM6DSOX is a “supervised learning” which consists of:

. identifying some classes to be recognized;

. collecting multiple data logs for each class;

. performing some data analysis from the collected logs to learn a generic rule which allows mapping inputs
(data logs) to ouputs (classes to be recognized).

In an activity recognition algorithm, for instance, the classes to be recognized might be: stationary, walking,
jogging, biking, driving, etc... Multiple data logs have to be acquired for every class, e.g. multiple people
performing the same activity.

The analysis on the collected data logs has the purpose of:

. defining the features to be used to correctly classify the different classes;

. defining the filters to be applied to the input data to improve the performance using the selected features;

. generating a dedicated decision tree able to recognize one of the different classes (mapping inputs to
outputs).

Once a decision tree has been defined, a configuration for the device can be generated by the software tool
provided by STMicroelectronics (described in Section 2 Machine Learning Core tools). The decision tree will run
on the device, minimizing the power consumption.

Going deeper in detail on the Machine Learning Core feature inside the LSM6DSOX, it can be thought of as three
main blocks (Figure 2):

1. Sensor data
2. Computation block
3. Decision tree

Figure 2. Machine Learning Core blocks

Computation Decision
Block Tree

Accelerometer Filters Meta-classifier

Gyroscope Features Results

N\

v 2)
) 2)

The first block, called “Sensor Data”, is composed of data coming from the accelerometer and gyroscope which
are built in the device, or from an additional external sensor which might be connected to the LSM6DSOX through
the I?C master interface (sensor hub).

The Machine Learning Core inputs defined in the first block are used in the second block, the “Computation
Block”, where filters and features can be applied. The features are statistical parameters computed from the input
data (or from the filtered data) in a defined time window, selectable by the user.

The features computed in the computation block will be used as input for the third block of the Machine Learning
Core. This block, called “Decision Tree” includes the binary tree which evaluates the statistical parameters
computed from the input data. In the binary tree the statistical parameters are compared against certain
thresholds to generate results (in the example of the activity recognition described above, the results were:
stationary, walking, jogging, biking, etc...). The decision tree results might also be filtered by an optional filter
called meta-classifier. The Machine Learning Core results will be the decision tree results which include the
optional meta-classifier.

AN5259 - Rev 1 page 3/41

AN5259

Inputs

3

The Machine Learning Core memory is organized in a “dynamic” or “modular” way, in order to maximize the
number of computation blocks which can be configured in the device (filters, features, etc...). A dedicated tool has
been designed to generate the configuration of the LSM6DSOX, in order to automatically manage memory usage.
The tool is available in the Unico GUI and it is described later in Section 2 Machine Learning Core tools.

The following sections explain in detail the three main blocks of the Machine Learning Core in the LSM6DSOX
described in Figure 2.

11 Inputs

The LSM6DSOX works as a combo (accelerometer + gyroscope) sensor, generating acceleration and angular
rate output data. The 3-axis data of the acceleration and angular rate can be used as input for the Machine
Learning Core.

The rate of the input data must be equal to or higher than the Machine Learning Core data rate configurable
through the embedded function register EMB_FUNC_ODR_CFG_C (60h), as described in Table 1.

Example: In an activity recognition algorithm running at 26 Hz, the Machine Learning Core ODR must be selected
at 26 Hz, while the sensor ODRs must be equal to or higher than 26 Hz.

The Machine Learning Core uses the following unit conventions:

. Accelerometer data in [g]

. Gyroscope data in [rad/sec]

. External sensor data in [Gauss] for a magnetometer, [Bar] for a pressure sensor

Since it is possible to connect an external sensor (e.g. magnetometer) to the LSM6DSOX through the Sensor Hub

feature (Mode 2), the data coming from an external sensor can also be used as input for machine learning
processing.

When using an external sensor, the sensitivity of the external sensor has to be set through registers
SENSITIVITY_EXT_SENSOR_L (E8h) and SENSITIVITY_EXT_SENSOR _H (E9h).

Example: For a magnetometer like the LIS2MDL, the sensitivity is 1.5 mG/LSB, which becomes 0.0015 G/LSB
after converting it to Gauss, and becomes 1624h converted as HFP (half-precision floating point value for the
LSM6DSOX sensitivity registers).

Sensitivity [nG/LSB] Sensitivity [G/LSB] Sensitivity HFP

1.5 mG/LSB 0.0015 G/LSB 1624h

Note: The half-precision floating-point format is expressed as:
SEEEEEFFFFFFFFFF (S: 1 sign bit; E: 5 exponent bits; F: 10 fraction bits).

The following procedure allows changing the conversion factor for the external magnetometer data:
Write 80h to register 01h // Enable access to the embedded function registers

Write 40h to register 17h // PAGE_RW (17h) = ‘40h’: enable write transaction

Write 11h to register 02h // PAGE_SEL (02h) = ‘11h’

Write E8h to register 08h // PAGE_ADDRESS (08h) = ‘E8h’

Write [LSB] conversion factor (LIS2MDL example, 24h) to register 09h

Write 11h to register 02h // PAGE_SEL (02h) = “11h’

Write E9h to register 08h // PAGE_ADDRESS (08h) = ‘E9h’

Write [MSB] conversion factor (LIS2MDL example, 16h) to register 09h

Write 00h to register 17h // PAGE_RW (17h) = ‘00h’: disable read / write transaction
0. Write 00h to register 01h // Disable access to the embedded function registers

2 © N O ODN =

The example of the procedure above to change the sensitivity for the external sensor is included in the
configuration generated by the Machine Learning Core tool (described in Section 2 Machine Learning Core tools),

AN5259 - Rev 1 page 4/41

ANS5259

Filters

3

so the user just needs to set a sensitivity value in the GUI, which will be translated in the register setting from the
software.

To summarize the Machine Learning Core inputs:

. Accelerometer data conversion factor is automatically handled by the device;

. Gyroscope data conversion factor is automatically handled by the device;

. External sensor data conversion factor is not automatically handled by the device. A conversion factor must
be set by the user in order to make the Machine Learning Core work with the correct unit of measurement.

An additional input available for all sensor data (accelerometer, gyroscope, and external sensor) is the norm.
From the 3-axis data the Machine Learning Core (in the LSM6DSOX) internally computes the norm and the norm
squared. These two additional signals can be used as inputs for machine learning processing.

The norm and the norm squared of the input data are computed with the following formulas:

V=\/xz+yz+z2

V2 =x2 4+ y2 + 272

Norm and norm squared data can be used in the decision trees in order to guarantee a high level of program
customization for the user.

1.2 Filters

The input data seen in the previous section can be filtered by different kinds of filters available in the Machine
Learning Core logic. The basic element of the Machine Learning Core filtering is a second order IIR filter, as
shown in the following figure.

Figure 3. Filter basic element

x(z) y(2) y'(2)

Gain —

b, J\ -a
L.+‘ 3

&
r

G D
&

The transfer function of the generic IR 2"d order filter is the following:

b1 + bzz_l + b32_2
Hlz| = 5

1+ azz_1 +azz™
From Figure 3, the outputs can be defined as:

(@) = H(z) - x(2)
V'(2) = ¥(2) - Gain

AN5259 - Rev 1 page 5/41

AN5259

Filters

3

To optimize memory usage, the Machine Learning Core has default coefficients for the different kinds of filters
(high-pass, band-pass, IIR1, IIR2). The Machine Learning Core tool will help in configuring the filter by asking for
the filter coeffients needed after selecting the kind of filter. The following table shows the default values and the
configurable values for the coefficients, depending on the filter type choosen. By setting different coefficients it is
possibile to tune the filter for the specific application.

Table 2. Filter coefficients

High-pass filter -0.5

Band-pass filter 1 0 -1 Configurable = Configurable ' Configurable
IIR1 filter Configurable = Configurable 0 Configurable 0 1
IIR2 filter Configurable = Configurable | Configurable @ Configurable = Configurable 1

The filter coefficient values are expressed as half-precision floating-point format: SEEEEEFFFFFFFFFF (S: 1 sign
bit; E: 5 exponent bits; F: 10 fraction bits).

1.2.1 Filter coefficients

The IIR filter coefficients can be computed with Matlab by using the following function:
[b, a] = butter(N,f_cut / (ODR/2), 'low")

Where:

. N is the order of the IIR filter (1 for IIR1, 2 for 1IR2)

. f_cut is the cutoff frequency [Hz] of the filter

. ODR is the Machine Learning Core data rate [Hz]

. ‘low’ (or ‘high’) is the kind of filter to be implemented (low-pass or high-pass)

The following table shows some examples of filter coefficients (most of them considering an ODR of 26 Hz).

Table 3. Examples of filter coefficients

High-pass IIR1, f_cut =1 Hz,

0.891725 -0.891725 - -0.783450 -
ODR =26 Hz
High-pass IIR1, f_cut =2 Hz,
0.802261 -0.802261 - -0.604521 - 1
ODR =26 Hz
High-pass IIR1, f_cut =5 Hz,
0.591628 -0.591628 - -0.183257 - 1
ODR =26 Hz
High-pass 1IR1, f_cut = 10 Hz,
0.274968 -0.274968 - 0.450063 - 1

ODR =26 Hz
High-pass 1IR2, f_cut =1 Hz,
ODR =26 Hz

0.8428435 | -1.685687 = 0.8428435 -1.6608344 @ 0.710540 1

High-pass IIR2, f_cut = 2 Hz,
ODR = 26 Hz

0.709560 -1.419120 0.709560 -1.332907 0.505334 1

High-pass IIR2, f_cut = 5 Hz,
ODR = 26 Hz

0.4077295 = -0.815459 0.407730 -0.426937 0.203981 1

AN5259 - Rev 1 page 6/41

AN5259

Features

3

High-pass IIR2, f_cut = 10 Hz,
0.085605 -0.171209 0.085605 1.019146 0.361564 1

ODR =26 Hz
Low-pass IIR1, f_cut =1 Hz,
0.108275 0.108275 - -0.783450 - 1
ODR =26 Hz
Low-pass IIR1, f_cut =2 Hz,
0.197739 0.197739 - -0.604521 - 1
ODR =26 Hz
Low-pass IIR1, f_cut =5 Hz,
0.408372 0.408372 - -0.183257 - 1
ODR =26 Hz
Low-pass IIR1, f_cut = 10 Hz,
0.725032 0.725032 - 0.450063 - 1

ODR =26 Hz

Low-pass IIR2, f_cut =1 Hz,
ODR =26 Hz

0.012426 0.024853 0.012426 -1.660834 0.710540 1

Low-pass IIR2, f_cut =2 Hz,
ODR =26 Hz

0.043107 0.086213 0.043107 -1.332907 0.505333 1

Low-pass IIR2, f_cut =5 Hz,
ODR =26 Hz

0.194261 0.388522 0.194261 -0.426937 0.203981 1

Low-pass IIR2, f_cut = 10 Hz,
0.595178 1.190355 0.595178 1.019146 0.361564 1

ODR =26 Hz
Band-pass 1IR2, f1 = 1.5 Hz, f2 = 5 Hz,
0.310375 0 -0.310375 -1.069500 0.379250 1
ODR =26 Hz
Band-pass 1IR2, f1 = 0.2 Hz, f2 = 1 Hz,
0.0236 0 -0.0236 -1.9521 0.9528 1

ODR =100 Hz

1.3 Features

The features are the statistical parameters computed from the Machine Learning Core inputs. The Machine
Learning Core inputs which can be used for features computation are:
. the sensor input data which includes
- sensor data from the X, Y, Z axes (e.g. Acc_X, Acc_Y, Acc_Z, Gyro_X, Gyro_Y, Gyro_Z);
- external sensor data (e.g. ExtSens_X, ExtSens_Y, ExtSens_2Z);
- norm and norm squared signals of sensor / external sensor data (Acc_V, Acc_V2, Gyro_V, Gyro_V2,
ExtSens_V, Ext_Sens_V2);
. the filtered data (e.g. high-pass on Acc_Z, band-pass on Acc_V2, etc...)

All the features are computed within a defined time window, which is also called “window length” since it is
expressed as the number of samples. The size of the window has to be determined by the user and is very
important for the machine learning processing, since all the statistical parameters in the decision tree will be
evaluated in this time window.

The window length can have values from 1 to 255 samples. The choice of the window length value depends on
the sensor data rate (ODR) and on the specific application or algorithm. In an activity recognition algorithm for
instance, it can be decided to compute the features every 2 or 3 seconds, which means that considering sensors
running at 26 Hz, the window length should be around 50 or 75 samples respectively.

Some of the feaures in the Machine Learning Core require some additional parameters for the evaluation (e.g. an
additional threshold). The following table shows all the features available in the Machine Learning Core including
additional parameters.

AN5259 - Rev 1 page 7/41

AN5259

Features

3

Table 4. Features

MEAN -

VARIANCE -

ENERGY -

PEAK TO PEAK -
ZERO CROSSING Threshold
POSITIVE ZERO CROSSING Threshold
NEGATIVE ZERO CROSSING Threshold
PEAK DETECTOR Threshold
POSITIVE PEAK DETECTOR Threshold
NEGATIVE PEAK DETECTOR Threshold

MINIMUM -

MAXIMUM -

1.31 Mean

The feature “Mean” computes the average of the selected input (/) in the defined time window (WL) with the
following formula:

1 WL-1
Mean:mzkzo Iy,

1.3.2 Variance

The feature “Variance” computes the variance of the selected input (/) in the defined time window (WL) with the
following formula:

Variance = WL WL

_ - 2
kai 5 1,2 _(kai 5 112]
1.3.3 Energy

The feature “Energy” computes the energy of the selected input (/) in the defined time window (WL) with the
following formula:

Energy = ZZViB 12
1.34 Peak-to-peak
The feature “Peak to peak” computes the maximum peak-to-peak value of the selected input in the defined time
window.
1.3.5 Zero-crossing

The feature “Zero-crossing” computes the number of times the selected input crosses a selected threshold in the
defined time window.

1.3.6 Positive zero-crossing

The feature “Positive zero-crossing” computes the number of times the selected input crosses a selected
threshold in the defined time window. Only the transitions with positive slopes are considered for this feature.

1.3.7 Negative zero-crossing

The feature “Negative zero-crossing” computes the number of times the selected input crosses a selected
threshold in the defined time window. Only the transitions with negative slopes are considered for this feature.

AN5259 - Rev 1 page 8/41

ANS5259

Decision tree

1.3.9

1.3.10

1.3.11

1.3.12

1.4

AN5259 - Rev 1

Peak detector

The feature “Peak detector’ counts the number of peaks (positive and negative) of the selected input in the
defined time window.

A threshold has to be defined for this feature, and a buffer of three values is considered for the evaluation. If the
second value of the three values buffer is higher (or lower) than the other two values of a selected threshold, the
number of peaks is increased.

Positive peak detector

The feature “Positive peak detector’ counts the number of positive peaks of the selected input in the defined time
window.

A threshold has to be defined for this feature, and a buffer of three values is considered for the evaluation. If the
second value of the three values buffer is higher than the other two values of a selected threshold, the number of
peaks is increased.

Negative peak detector

The feature “Negative peak detector’ counts the number of negative peaks of the selected input in the defined
time window.

A threshold has to be defined for this feature, and a buffer of three values is considered for the evaluation. If the
second value of the three values buffer is lower than the other two values of a selected threshold, the number of
peaks is increased.

Minimum
The feature “Minimum” computes the minimum value of the selected input in the defined time window.

Maximum
The feature “Maximum” computes the maximum value of the selected input in the defined time window.

Decision tree

The decision tree is the predictive model built from the training data which can be stored in the LSM6DSOX. The
training data are the data logs acquired for each class to be recognized (in the activity recognition example the
classes might be walking, jogging, driving, etc.).

The outputs of the computation blocks described in the previous sections are the inputs of the decision tree. Each
node of the decision tree contains a condition, where a feature is evaluated with a certain threshold. If the
condition is true, the next node in the true path is evaluated. If the condition is false, the next node in the false
path is evaluated. The status of the decision tree will evolve node by node until a result is found. The result of the
decision tree is one of the classes defined at the beginning of the data collection.

Figure 4. Decision tree node

[Tree Example\

Typical node

Input Condition

\ True Path False Path

The decision tree generates a result every sample. These results can also be filtered by an additional (optional)
filter called Meta-Classifier, which is described in Section 1.5 .

page 9/41

AN5259

Decision tree

3

The Machine Learning Core results (decision tree results filtered or not filtered) are accessible through dedicated
registers in the embedded advanced features page 1 of the LSM6DSOX registers (as shown in Table 5). These
registers can be countinuously read (polled) to check the decision tree outputs. It is also possible to set an
interrupt on the change in the decision tree result (Table 6). Furthermore, the interrupt signal generated can also
be driven to the INT1 pad, so that an MCU performing other tasks, or sleeping (to save power), can be awakened
when the Machine Learning Core result has changed.

Table 5. Decision tree results

MLCO_SRC (70h) Result of decision tree 1
MLC1_SRC (71h) Result of decision tree 2
MLC2_SRC (72h) Result of decision tree 3
MLC3_SRC (73h) Result of decision tree 4
MLC4_SRC (74h) Result of decision tree 5
MLC5_SRC (75h) Result of decision tree 6
MLC6_SRC (76h) Result of decision tree 7
MLC7_SRC (77h) Result of decision tree 8

Table 6. Decision tree interrupts

MLC_STATUS_MAINPAGE (38h) Contains interrupt status bits for changes in the decision tree result

MLC_STATUS (15h) Contains interrupt status bits for changes in the decision tree result
MLC_INT1 (0Dh) Allows routing of interrupt status bits for decision trees to INT1 pad
1.41 Decision tree limitations in the LSM6DSOX

The LSM6DSOX has limited resources for the Machine Learning Core in terms of number of decision trees, size
of the trees, and number of decision tree results.

Up to 8 different decision trees can be stored in the LSM6DSOX, but the sum of the number of nodes for all the
decision trees must not exceed 256 (*). Every decision tree can have up to 16 results in the LSM6DSOX.

(*) This number might also be limited by the number of features and filters configured. In general, if using few
filters and features, there is no further limitation on the size of the decision tree. However, when using many filters
and features, the maximum number of nodes for the decision trees must be reduced, since some more memory
will be allocated for the additional decision tree nodes. For instance, if the number of filters configured is 10 and
the number of features configured is 50, the maximum number of nodes might be reduced by 100.

The table below summarizes the limitations of the LSM6DSOX.

Table 7. Decision tree limitations in the LSM6DSOX

Maximum number of decision trees 8
Maximum number of nodes (Total number for all the decision trees) 256 (*)
Maximum number of results per decision tree 16

AN5259 - Rev 1 page 10/41

AN5259

Meta-classifier

3

1.5 Meta-classifier

A meta-classifier is a filter on the outputs of the decision tree. The meta-classifier uses some internal counters in
order to filter the decision tree outputs.

Decision tree outputs can be divided in subgroups (e.g. similar classes can be managed in the same subgroup).
An internal counter is available for all the subgroups of the decision tree outputs. The counter for the specific
subgroup is increased when the result of the decision tree is one of the classes in the subgroup and it is
decreased otherwise. When the counter reaches a defined value, which is called “end counter” (set by the user),
the output of the Machine Learning Core is updated.

Table 8. Meta-classifier example

oetion s et AAl415] 5 551 5 51 a4

Counter A
(End counter = 3) 172 3 2 3 21,01/ 000 1 2 3
nd counter =

Counter B
(End counter = 4) 00 01 0 12 3 2 3 454 3 2
nd counter =

Machine Learning Core result (including meta-classifier) x x AAAAAAAAABIBDBU BA

The previous table shows the effect of filtering the decision tree outputs through a meta-classifier. The first line of
the table contains the outputs of the decision tree before the meta-classifier. Counter A and Counter B are the
internal counters for the two decision tree results (“A” and “B”). In the activity recognition example, the result “A”
might be walking and the result “B” jogging. When the internal counter “A” reaches the value 3 (which is the End
Counter for counter “A”), there is a transition to result “A”. When the internal counter “B” reaches value 4, there is
a transition to result “B”.

The purpose of the meta-classifier is to reduce the false positives, in order to avoid generating an output which is
still not stable, and to reduce the transitions on the decision tree result.

1.51 Meta-classifier limitations in the LSM6DSOX

The meta-classifier has a limited number of sub-groups, 4 sub-groups can be used in LSM6DSOX. Similar
classes may need grouped in the same subgroup to use the meta-classifier.

Table 9. Meta-classifier limitations in the LSM6DSOX

T oo

Maximum number of results per decision tree 16
Result sub-groups for meta-classifier per decision tree 4
1.6 Finite State Machine interface

The LSM6DSOX also provides a configurable Finite State Machine which is suitable for deductive algorithms and
in particular gesture recognition.

Finite state machines and decision trees can be combined to work together in order to enhance the accuracy of
motion detection.

The decision tree results generated by the Machine Learning Core can be checked by the Finite State Machine
available in the LSM6DSOX; this is possible through the command CHKDT available in the state machine

AN5259 - Rev 1 page 11/41

m ANS5259

Machine Learning Core tools

2 Machine Learning Core tools

The Machine Learning Core programmability in the device is allowed through a dedicated tool, available as an
extension of the Unico GUI.

2.1 Unico GUI

Unico is the Graphical User Interface for all the MEMS sensor demonstration boards available in the
STMicroelectronics portfolio. It has the possibility to interact with a motherboard based on the STM32
microcontroller (Professional MEMS Tool), which enables the communication between the MEMS sensor and the
PC GUI.
The details of the Professional MEMS Tool board can be found at the following page:
https://www.st.com/content/st_com/en/products/evaluation-tools/product-evaluation-tools/mems-motion-sensor-
eval-boards/steval-mki109v3.html
The Unico GUI is available in three software packages for the three operating systems supported.
. Windows
- https://www.st.com/content/st_com/en/products/embedded-software/evaluation-tool-software/stsw-
mki109w.html
. Linux
- https://www.st.com/content/st_com/en/products/embedded-software/evaluation-tool-software/stsw-
mki109l.html
. Mac OS X

- https://www.st.com/content/st_com/en/products/embedded-software/evaluation-tool-software/stsw-
mki109m.html

Unico GUI allows visualization of sensor outputs in both graphical and numerical format and allows the user to
save or generally manage data coming from the device.

Unico allows access to the MEMS sensor registers, enabling fast prototyping of register setup and easy testing of
the configuration directly on the device. It is possible to save the current register configuration in a text file and
load a configuration from an existing file. In this way, the sensor can be re-programmed in few seconds.

The Machine Learning Core tool available in the Unico GUI abstracts the process of register configuration by
automatically generating configuration files for the device. The user just needs to set some parameters in the GUI
and by clicking a few buttons, the configuration file is already available. From these configuration files, the user
can create his own library of configurations for the device.

Since the machine learning approach requires the collection of data logs, they can be acquired through the load/
save tab of Unico (Figure 5). For the accelormeter, the checkbox “Acceleration” allows saving data in [mg]. For
the gyroscope, the checkbox “Angular rate” allows saving data in [dps].

AN5259 - Rev 1 page 12/41

https://www.st.com/content/st_com/en/products/evaluation-tools/product-evaluation-tools/mems-motion-sensor-eval-boards/steval-mki109v3.html
https://www.st.com/content/st_com/en/products/evaluation-tools/product-evaluation-tools/mems-motion-sensor-eval-boards/steval-mki109v3.html
https://www.st.com/content/st_com/en/products/embedded-software/evaluation-tool-software/stsw-mki109w.html
https://www.st.com/content/st_com/en/products/embedded-software/evaluation-tool-software/stsw-mki109w.html
https://www.st.com/content/st_com/en/products/embedded-software/evaluation-tool-software/stsw-mki109l.html
https://www.st.com/content/st_com/en/products/embedded-software/evaluation-tool-software/stsw-mki109l.html
https://www.st.com/content/st_com/en/products/embedded-software/evaluation-tool-software/stsw-mki109m.html
https://www.st.com/content/st_com/en/products/embedded-software/evaluation-tool-software/stsw-mki109m.html

AN5259
Unico GUI

3

Figure 5. Unico Load/Save tab

nmlsdeawt: |0cm :l A Connect a‘m' b start Swp X Bt
il | mfo [optons | Repsters | Repsters2 | Reg1 | Reg2 | AdvPage0 | AdvPage 1 | Sensor tubRegsters | Load/Save
Bars
,ﬁ Save Data
i e veferome: | _
1 - Chedk the data you want to save: (Acceterometer) ¥l1s8 | Acceleration] Angle +| Interrupt
l:s: (Gyroscope) ¥l s8] Angular Rate
2 [¥] Temperature LS8 [¥] Temperature [C] 7] DedsionTree Results
FIFO
- Press Start for logging: [Start] [Stap]
o
FIFO
E,ﬁ Load/Save Configuration
[]
Indin,
) - Click Load for loading a configuration from a text file: [e J
FFT
% - Chck Save for saving the current configuration to 3 text fle: (Save)
FFT
ik
Mmc
*
Pedomet.
STMicroelectronks Demonstration kit = STEVAL-MKTIS7V 1 (LSMSDSOX) Board = ProfiMEMSTool Firmware Version = V2.39.0 Unico Version = 7. 1.7.0 Beta

The data logs collected can then be used in the Machine Learning Core tool of Unico, available on the left side of
the GUI in the Data Patterns tab of the Machine Learning Core (Figure 6), the data logs can be loaded. An
expected result must be assigned to each data pattern loaded (for instance, in the the activity recognition
algorithm, the results might be: still, walking, jogging, etc..).

Figure 6. Machine Learning Core tool - Data Patterns

Load Data Pattern

C:logsiruring_2.tet] S]

Corrent Data Pattern
Sample [#] Acc Aec Ao Gy GyrY GyrZ Extf Exty Extz =
e =35 P s 3.£3£3 19,2003 3.033/3 u u u
925 -43 249 838 24,465 -0.3325 10.78 0 [[]
926 26 281 656 34.09 -15.54 18.3225 1] 1] []
927 7 311 571 303713 -21.5425 22.1113 0 0 (]
928 9 329 626 20,6413 -23.2488 20.1863 o [(1]
929 119 352 718 14.805 -24.4563 13.6325 [1] [1] []
930 129 380 780 17,7275 -27.1863 3.3775 0 [[]
931 131 406 876 16.17 -30.3538 -9.1875 1] [1] []
| 932 & 460 923 16,4238 254363 -19.74 0 [| 0 ‘|
. 3

2
3
5

The unit of measurement for the data expected in the data patterns tab of the Machine Learning Core tool are:
. [mg] for the accelerometer
. [dps] for the gyroscope

The conversion from [mg] to [g] for the accelerometer, and [dps] to [rad/s] for the gyroscope, is automatically
managed internally by the Machine Learning Core tool, to allow the Machine Learning Core logic to work with the

AN5259 - Rev 1 page 13/41

ANS5259

Decision tree generation

3

correct data ([g] and [rad/s]). For the external sensor data, the user will be required at a later stage in the
configuration to set the proper sensitivity.

In the “Configuration” tab of the Machine Learning Core tool (Figure 7), all the parameters of the Machine
Learning Core (such as ODR, full scales, window length, filters, features, meta-classifier) can be configured. The
tool allows selecting multiple filters which can be applied to the raw data, and multiple features to be computed
from the input data or from the filtered data. The features computed will be the attributes of the decision tree.

Figure 7. Machine Learning Core tool - Configuration

[DataPatiems | Configwaton |

Hachine Learning Core configuration

Accelerometer ODR

Select the oulput data rate for the scoserometer: [%r: - I

Nurnber of dedision tress: [1 "

Window length
Mumber of samples for the window of interest: ISI J

Filter configuration
Configure ont fiter: [End fisers configuraton -]

Features configuration
Configure one feature: [ean -]
8 unsigned
Sgred

Selact theinput for this feature: [accy =l

([mee) S ¢ we)

The “Configuration” tab of the Machine Learning Core tool generates an Attribute-Relation File (ARFF), which is
the starting point for the decision tree generation process. The decision tree can be generated by different
machine learning tools (Section 2.2).

Once the decision tree has been generated, it can be uploaded to the Machine Learning Core tool in Unico to
complete the generation of the register configuration for the LSM6DSOX.

The Unico GUI, by accessing the sensor registers, can read the status of the decision tree ouputs, visualize them
together with sensor data, and make it possibile to log all the data (sensor ouputs and decision tree outputs)
together in the same text file.

2.2 Decision tree generation
Several machine learning tools are able to generate a decision tree. One of the most used tool is Weka, software
developed by the University of Waikato, more details about this software can be found in Section A.1 WEKA.

Weka is able to generate a decision tree starting from an Attribute-Relation File (ARFF). Through Weka it is
possible to evaluate which attributes are good for the decision tree, and different decision tree configurations can
be implemented by changing all the parameters available in Weka. Figure 8 and Figure 9 show the “Preprocess”
and “Classify” tabs of Weka which allow evaluating the attributes and generating the decision tree.

AN5259 - Rev 1 page 14/41

AN5259

Decision tree generation

3

Figure 8. Weka preprocess

| [Preprocess | classity | Cluster | Associate | Selectattibutes | Visualize |

[Open file...] { Open URL.. j [Open DB... J [Generate. .. J Undo [Edit.. J [Save.. J
Filter
| choose J|Nune H Apply |
Current relation Selected
Relation: ActivityDataForProgram.. Aftriputes: 15 MName: MEAN_on_ACC_X Type: Numeric
Instances: 6217 Sum of weights: 6217 Missing: 0 (0%) Distinct: 3243 Unigue: 1894 (30%)
Statistic | Value
r 7| Minimum 0
Maximum 1.487
l All J l None J l Invert J l Pattern J Mean 047
StdDev 0384
No. | | Name |

Class: class (Mom) ¥ || Visualize All
!

MEAN_on_ACC_Y
MEAN_on_ACC_Z

VAR_ON_ACC_X
VAR_on_ACC_Y

2

iy

4[] MEAN_on_ACC_V2
50

60

7

Status

0K

Figure 9. Weka classify

[Preprocess TCJa.ssiﬂr T Cluster T Associate T Select attributes T Visualize]
rClassilier

| choose J|.J4s-c 0.25-M2

Test options: Classifier output
r r

~

S B ETT S PeakToPeak _on ACCV <= 0.214844: Stationary (721.0)

O Supplied test set Set.. PeakToPeak_on ACC ¥V > 0.214344

ZeroCross_on IIR2_ACC W2 <= 24

ZeroCross_on IIR2 ACC V2 <= 23

MEAN on ACC X <= 0.7006884

VAR on RCC_Z <= 0.007996

| MEZN on ACC I <= 0.369873: Walking (20.0)

| MEZN on ACC Z > 0.369873: Stationary (5.0)
VAR on ACC Z > 0.00799&

| ZeroCross_BP_ACC W2 <= 22: Walking (2037.0/12.0)
| Zerolross_BP_ACC V2 » 22

| | MEZN on ACC Z <= 0.348389: Walking (62.0)

| | MEZN on ACC Z > 0.343389
|
|

(® Cross-validation Folds 10

() Percentage split % 66

[More options...

{ (Mom) class

Start Stop

Result list {right-click for options)
-

| | VRE_on RCC Y <= 0.032715: Walking (4.0)

| | VRE on RCC Y > 0.032715: FastWalking (6.0)
MERN on ACC ¥ > 0.700684

| MERN on ACC ¥ <= 0.61084

| | VAR on ACC X <= 0.710443

| | | MEAN on ACC X <= 1.242188

|| =< J

I
[
[
[T B
[T B
[T B
[T B
[T B
[T B
[T B
[T B
[T B
[T B
10:41:15 - trees.J4 | [

[

[

[

Once the decision tree has been generated, it can be uploaded to the Machine Learning Core tool in Unico, to
complete the generation of the register configuration for the LSM6DSOX.

AN5259 - Rev 1 page 15/41

ANS5259

Configuration procedure

3

The Machine Learning Core tool in Unico accepts as input the decision tree files in a textual format (.txt). The
textual file must contain the decision tree in the Weka J48 format (an example of a decision tree is shown in
Figure 10). From the Weka classifier output (Figure 9), the decision tree has to be selected starting from the first
line (first node) and including the last two rows (number of leaves and size of the three tree). The selected ouput
from Weka has to be copied to a text file.

Figure 10. Decision tree format

File Edit Format View Help

lpverage_z <= 37.62

Zerocross_y <= 0

average_z <= -2E8.35

| average_z == -57.24: nowalk (11.0)

| average_z > -57.24: walk (44.0/6.0)
average_z > -28.35: nowalk (1398.0,/341.0)
Zerocross_y = 0

average_z <= -60.28: nowalk (82.0/1.0)
average_z > -60.28: walk (11393.0/472.0)
average_z > 37.62

average_z == 43.4

zerocross_y <= 5: nowalk (253.0/22.0)
Zerocross_y > 5

| zerocross_y == 11: walk (161.0/39.0)
| zerocross_y = 11: nowalk (53.0/10.0)
average_z > 43.4: nowalk (5361.0/634.0)

Number of Leawves : 9

Size of the tree : 17

If the decision tree has been generated from a different tool, the format must be converted to the Weka J48 format
in order to allow the Machine Learning Core tool in Unico to read the decision tree correctly.

2.3 Configuration procedure

Figure 11 shows the whole procedure of the machine learning processing, from the data patterns to the
generation of a register setting for the device (LSM6DSOX).

As seen in Section 2.1 the data patterns can be acquired in the “Load/Save” tab of the Unico GUI. If this is not
possible or if the user wants to use some different data patterns, they can still be uploaded in the Machine
Learning Core tool of Unico, with a few limitations:

. Every data patterns has to start with a header line, containing the unit of measurement of the data
— A X[mg]A_Y [mg]A_Z[mg] G_X [dps] G_Y [dps] G_Z [dps]
. The data after the header line must be separated by “tab” or “space”.

. The order of sensors in the file columns must be accelerometer data (if available), gyroscope data (if
available), external sensor data (if available).

. The order of the axes in the columns of any sensor is X, Y, Z.

AN5259 - Rev 1 page 16/41

m ANS5259

Configuration procedure

Figure 11. Configuration procedure

Log files
(data patterns)

Acquire data patterns

Load data patterns in the

tool, assigning expected S

results =
#

Configure filters and = =

features to be used

i
AR
JI{ |

= 2
Generate an ARFF file for = e
WEka | e
E—= | Attributes file
((ARFF)

Generate a decision tree
with Weka

Save the decision tree to a
fext file

Decision tree file
(-txt)

Load the decision tree to
the tool and assign results
and meta-classifier

Generate a configuration
file for the device

Register Configuration

(-uc)

AN5259 - Rev 1 page 17/41

ANS5259

Configuration procedure

3

Opening the Machine Learning Core tool available in Unico, the data patterns, acquired in the format described
above, can be loaded assigning the expected result for each data log (as shown in the following figure).

Figure 12. Assigning a result to a data pattern

- i
Load Data Pattern
€:fogsrunning_2.tet | L i]
Current Data Pattern
Sample (2] Acck AceY AceZ Gyr Gyr¥ Gy Exti Exctf Extz =

His =33 FEo) weL LILD 13,203 2.03343 u o v
935 -43 249 838 24.465 -0.3325 10.78 0 0 0
926 26 281 656 34.09 -15.54 18.3225 0 0 0
927 77 311 571 30,3713 -21.5425 221113 0 0 0
928 99 329 626 206413 -23.2488 20.1863 0 0 0
929 119 352 718 14.805 -24.4563 13.6325 a 0 0
930 129 380 780 17.7275 -27.1863 3.3775 i 0 0
931 131 406 876 1617 -30.3538 -9.1875 0 0 0
932 85 460 923 16,4238 -25.4363 -19.74 a 0 [

q_2.0E
q_3.bd
C:/logs/running_1.bd

When all the data patterns have been loaded, the Machine Learning Core parameters can be configured through
the configuration tab. These parameters are ODR, full scales, number of decision trees, window length, filters,
features, etc... (as shown in Figure 13, Figure 14, Figure 15, Figure 16).

Figure 13. Configuration of Machine Learning Core

Device
Select the device: [Lsmenson i |
Hachime Leamning Core D06
Select the intermal data rate for the Madhne Leaming Core: [;‘sﬂz _"
Inparts
Select the Madhine Leaming Core inputs: [Moﬂh’ﬁmmf _"
Aocelerometer Full Scale
Select the full scale for the acoslerometer: [1g J
Accelerometer O0R
Select the output data rate for the acosierometer: [EH! _'.
Decision trees.
Mumber of decson trees: [=/
[—JM 1 0% [—let

AN5259 - Rev 1 page 18/41

ANS5259

Configuration procedure

3

Figure 14. Configuration of filters

Window length
Number of samples for the window of interest: (64 |
Filter configuration
e (Fe acco |
Filter configuration
Configure ane fiter: [eraccw) ~
HP ACC(xyz) -
HP ACC(Y) =
HP ACC(V~2)
BP ACC(xyz)
IR 1 ACC(xyz)
IIR1 ACC(Y)
 IIR1ACC(V~2)

Figure 15. Configuration of features

| Datapatterrs | Configuration
B
Configure one feature: [Energy |
@) Unsigned
Sigred
Select the input for this feature: [acc_v I |
Features configuration
Configure one feature: [n& o Peak ;j
@) Unsigned
Signed
Select the input for this feature: [acc v~z i |
Features configuration
Configure one feature: End features configuration hd
. _ -
LREE Energy
Sigred Peak to Peak
Zero Crossing
Positive Zero Crossing
Select the input for this feature: Negative Zero Crassng _
Peak Detector L=
Positive Peak Detector -
| Megative Peak Detector =
—
Figure 16. ARFF generation
Features configuration
Configure one feature: [End features configuration -1
@ Unsigned
Signed
Select the input for this feature: (accx =1
Save ARFF file
R i (I orowse]
. > [wee |

Multiple filters and multiple features can be chosen. The GUI will iteratively ask for another filter (or another
feature) until the parameter “End filter configuration” (or “End features configuration”) is chosen (Figure 16).

Once all the features have been configured, the Machine Learning Core tool in Unico will generate an ARFF file,
which is the file containing all the features computed from the training data. Figure 17 shows an example of an
ARFF file generated by the Machine Learning Core tool in Unico.

The ARFF file generated can be loaded into Weka to build a decision tree. If the decision tree is not going to be
built with Weka, the user must adapt the ARFF file to the file format required by any other tool for decision tree

AN5259 - Rev 1 page 19/41

m ANS5259

Configuration procedure

generation. In this particular case, the decision tree format may also be needed to be adapted to the Weka J48
format described in Section 2.2 .

Figure 17. ARFF file

Ble [d4 fewch Yew fpodeg Lenpwge Sepiogs Tosbs Moo EBum Pl Hindow X
dEHE s S R el B3RS ([EDE

Brelazion “ML" =

fartribuce ABS(MEAN) oo ACT X mumerlc

fartribuce A3S(HEAN) _co_ACC_Y mumeric

Bartribute ABS(HEAN) co_ACC_I mumeric

Battribuce ADF(MEAN) on_ACT V-1 mumeric

Battribute A33(VAR)_co ACC X ssmeric

Bartribute A25(VAR) _c= ACC Y sumeric

reribure 353(VAR) sm AOC P sumerie

10 perrribure AB3(VRR)_sa ROT VX musesis

11 Fartribune AR3(ENERSY| e ADC V-2 numeris

farcribuce ASS(ENERGY| _on_filuer BF_on AOC_V°I mumeric
fattribuce ARS(ENERGY)_on_filter ITRZ se ACC_V*I numeric
fattribuce ABS{ZeroCrosa) _on_| _BE_cn_ACC V°@ numeric
Bstiribute ABS{IesoCross)_on_filtes_I1RI_oco_CC_ V2 numeric
Battribute ASS(FeskToPeak)_ou_SC_V semecic

Buteribure class |Staticnazy, Maliing, Jeqging, Biking)

Baata

0.0052403, 0.0290625, 1.01465, 1.03906, 4.17233e-0€, 147e=06, 0.00€23594, 0.010T422, 80.25, 0.585932 W75, @, 1, D.004€484, Staticnary

E3967, 0.0389404, 101485, 1.0361%, 2.02656e-06, T.61539e-06, O.00683554, O.008TEE 5175, 0, 0, 0.0107T422, Sceriesary
€09207, 0.039978, 1.01465, 03223, 4.64916e-0€, 4.762)7e-06, 0.000976562, 0.004 €25, 0, 0, 0.0136719, Stationary
23 0.C0%59235, 0.040069€, 1.01iT, 03516, 3.01984e-06, 7.61519e-06, 0.007E1I5, 0.003EEEIE, B0, 0.00042 0, 9, 0.01265¥5), Staticmary

24 D.COELETEM, 00393151, 1.01562, 1.03418, J.4% -04, B.50307e-06, 0.0009TESE2, 0, BO.25, 0.000E36101, #0.062%, O, 0, 0.0044484, Stationary

FE 0.00%30624, C.03MERT, 1.0166, 1.0332, 4.03212e-0%, 9.33674e-06, 0.00195212, 0.0009TES61, BO.187%, 0.000090053, £0.12%, . 0.0136933, Staticnary
46 0.00391aTe, C.030% 1.0166, 1.03418, J.69340e-04, 7. Jhe-06, 0.000976343, 0, £0.13, 0.000770348, €0.9373, 0, 0. 0.0136933, Jtaticossy

2 000541308, 0.039367TT, 1.0144%, 1.03138, 3.27826e-04, 1. 2e=08, 0, 0.00087ES62, TH_$A7S, O.00044ITST, 20, 0, O, 0.0136T1%. Sratissasy

000675964, 0.0389098, 1.01562, Se=04€, 1.14441le=05, C.002929€%, 0.00T829€9, B0.3125, 0.000€0987S, 20.5, 0, O, 0.0107422, Scaticmasy
B.SOESEITE, 00843066, 1.01468, Be=6, €.61573e=06, 0.0009TESEY, 0.0DSFTESEZ, TH_$ATE, O.M0041861T, SO.0EEE, 0, O, S.G10743F, rariesary
81741, O0.0294287, 1.01367, 1.03223, £.19 =06, 1.04304e-05, 0.0029256%, 0.00155312, BO.12S, 0.DONETTSRE, o 0. 0, 0.0126%53, Suacicasry
€05392, 0.03973¥9, 1.0127, 1.02612, 2.5034e-0€, 1.04504e-05, 0.00976562, 0.006BX58, B0.0625, 0.000499725, 0, 0, 9.0107422, Stationary
0.00537106, 0.039083, 1.0127, 1.03413, 1.86102e-08, 6.67572e-06, O.CO27R506, 0.005B5534, BO.1IS, 0.000460425, BO.0E25, O, O, 0.013671%, Scatiomary
0.00651165, C.0094552, 1.0146%, 1.0032, 2,26450e-06, 1.52888e-05, 0.0029296%, 0.00198312, BO0.2%, 0.000424862, B0.2%, O, O, 2.0117188, Sceticsary
0.00%8746, C.0J075TY, 1.01367, 1.0332, J.63500e-04, 9.32474e-07, 0.0039062%, 0.00202849, B0.212%, 0.00118351, #0.873, 0, @, 0.00174781, Staticoary
0.00416837, 0.0JNETRY, 1.01367, 1.00613, J.99351e-04, T.6300%e-DE, 0.0048 0. 00ETERE, .87%, 9, 0 0. 433, Staticoasy
e-08, 0.00097 . 0.00380428, L1878, &, 0. 00124943, Stiticaasy
408, O.014E143, 1.02081, 1.04199, £.4373e-0d, 2.BE102e=0d, O, 0.005R5A3E, B1.DE35, 0.0 G, 0.0138488, Sraricoasy

A5547, S.014185, 1.01953, L.04004, T.dETRle-0#, 1.50T¥Se=06, O, O.00TELYS, B4.6X5, 0.0004° , 0.011T188, Scavicsary

85699, 0.0135422, 1.01855, 1.03711, 5.72205&-06, 4.76837e=07. O, 0. BO.627S, 0.000TEMLE. €353, Sratisnary

23105, 0.014556%, 1.0195%, 1.02906, 5.48262e-0€, 1.66233e-06, 0.000976562, 0.002529€9, BO. «5625, 0, 0, 0.0117188, Statlicnary
B737E, ©.0143585, 1.0195%, 1.04004, &.4373e-0, J.05%de-06, 0.000376562, 0.006E353, BO. 75, 0, 0, 0.00574562, Stationary
22495, 9.0138016, 1.01BSS, 04199, 7.15256e-06, 2.26430e-06, 0.00390625, 0.006BXS3, B1, 0, @.0046404, STECIOOATY
80141, 0.0143369, 1.020%1, 03613, . 4373e-0%, 1.764%0e-06, O.COAERZIEL, 0.006025M, 01.063%, 0.000032333. 0, @, 0.0117i88, Steticoary
87331, 0.0141373, 1.01853, 1.04004, %.96046e-04, 1.1500%e-06, O, 0.00623354. BO.TH, 0.000452293, £1.12%, 0, @, 0.011 Staticzary

0.0178171, ©.0140076, 1.01953, 1.04199, €.8373e-08, I.90003e-06, O.0O29206R, O.004BEQEL, E1.3878, 0.0031692, E1.TH, 0, O, 9.0036T1F, ITatiomacy -

Ian-du#Ht bength : 4215755l 30380 Lzl Cel:15 Sel:0|0 Windows [CRLF) UTF-8 L

O.00430588, ©.0393066, 1.01465, 1.0333%, 3.150004-04, 8,537

After configuring the result values for the decision tree, the decision tree (in the Weka J48 format) can be loaded
in the Machine Learning Core tool of the Unico GUI in order to complete the configuration and get the register
settings for the device (LSM6DSOX).

Figure 18. Configuration of results and decision tree

Save ARFF file

ARFF file: (c:pusers/michele ferraina/Desktop/activity.arff)

Decision Tree #1 Results
Insert the result values [from 0 to 15] for dedsion tree #0:

stil walking jogging

@) I (O

Decision Tree #1 File (WEKA output)

Decision tree 21: (]

[A T

The last step of the configuration process is to configure the meta classifier, which is the optional filter for the
generation of the decision tree results. After that, the tool is ready to generate a configuration for the device
(Figure 18).

AN5259 - Rev 1 page 20/41

ANS5259

Configuration procedure

AN5259 - Rev 1

Figure 19. Meta classifier and device configuration

| CataPattems | Configuraton

Hachine Learning Core configuration

Save ARFF file
ARFF e

]
k!ﬁogs.'xt'-\tf.a i

Decision Tree 21 Results
Ingpert the result volses [from 0 to 15] for decsion tree #0:

=l w
]

£

-

Decision Tree #1 File (WEKA cutput) - [Available nodes = 247]
Decision tres 211 [C:_J\ogs:jeusm free. tut

Heta
Ingert the end counter values for the dedision free:

1

When the register configuration for the device has been saved, it can be loaded in the device using the Load/
Save tab of the Unico GUI.

Figure 20. Unico load configuration
Load/Save Configuration

- Click Load for loading a configuration from a text file:

- Click Save for saving the current configuration to a text file:

When the device is programmed, the Machine Learning Core results can be monitored in the Data window of
Unico (Figure 21) or in one of the registers tabs containing the Machine Learning Core source registers
(Figure 22).

page 21/41

AN5259

Configuration procedure

3

Figure 21. Unico Data window

Data read from the Accelerometer

Gyroscope:

Data read from the Gyroscope

Figure 22. Unico - Machine Learning Core source registers

MLCO_SRC (7oh) | 01 [Resd | wree | Defauk |
MLC1_SRC (71h) | 00 [Resd | wree | Defauk |
MLC2_SRC (72h) | 00 [Resd | wree | Defauk |
MLC3_SRC (73h) | 00 [Resd | wree | efauk |
MLC4_SRC (7ah) | 00 [Resd J wree | Defauk |
MLCS_SRC (75h) [00 | Resd | wrie | Defeut |
MLC6_SRC (76h) [00 | Read | wrie | Defaut |
MLC7_SRC (77) [00 | Resd | wrie | Defeut |

AN5259 - Rev 1 page 22/41

m ANS5259

Decision tree examples

3 Decision tree examples

This section describes some examples of a decision tree which can be loaded in the LSM6DSOX.

3.1 Vibration monitoring

The decision tree in the following figure shows a simple example of vibration monitoring. Three different levels of
vibrations are recognized (vibration1, vibration2, vibration3) using a simple decision tree with just one feature, the
peak-to-peak feature in the accelerometer norm squared input (p2p_accNorm2).

The vibration monitoring example runs at 26 Hz, computing features in a window of 16 samples. The current
consumption of the LSM6DSOX is around 162 pA at 1.8 V. Turning off the Machine Learning Core, the current
consumption of the LSM6DSOX would be around 161 pA, so just 1 pA is the additional current consumption of
the Machine Learning Core.

Figure 23. Vibration monitoring decision tree

T —— =
DecisionTreeVibrati

File Edit Format View Help

p2p_accNorm2 == 0.03: vibrationl -
Zp_accNormd > 0.03

? p2Zp_accNormZ <= 1.5: wvibrationZ

| p2Zp_accNormZ2 = 1.5: vibration3

Number of Leaves : 3

Size of the tree : 5

AN5259 - Rev 1 page 23/41

ANS5259

Motion intensity

3

3.2 Motion intensity

The decision tree in the following figure shows a simple example of motion intensity implemented using just the
feature “variance” in the accelerometer norm. Eight different intensity levels are recognized by this decision tree.

The configuration for motion intensity described in this example runs at 12.5 Hz, computing features in a window
of 39 samples. The current consumption of the LSM6DSOX is around 162 pA at 1.8 V. Turning off the
programmable sensor, the current consumption of the LSM6DSOX would be around 161 pA, so just 1 pA is the
additional current consumption of the Machine Learning Core.

Figure 24. Motion intensity decision tree

r e
| dec_tree.txt - Notepad E@g

File Edit Format View Help

module_variance == 0.009: Intensity_0 -
module_wvariance = 0.009

module_variance == 0.013671875: Intensity_1l
module_variance > 0.013671875

module_variance == 0.0234375: Intensity_2
module_variance = 0.0234375

module_variance == 0.033203125: Intensity_3
module_variance = 0.033203125

| module_variance == 0.078125: Intensity_4
module_variance > 0.078125

| module_variance == 0.1640625: Intensity_5
| module_wvariance = 0.1640625

| | module_variance <= 0.3125: Intensity_6
| | module_variance > 0.3125: Intensity_7

Number of Leaves : B

Size of the tree : 15

3.3 6D position recognition

The LSM6DSOX already has a 6D position recognition algorithm embedded in the device. The example
described in this section shows just a different implementation using a decision tree.

The six different positions (Figure 25) can be easily recognized by a simple decision tree (Figure 26) using the
following features:

. meanx_abs: Mean of the accelerometer X axis (unsigned)

. meany_abs: Mean of the accelerometer Y axis (unsigned)

. meanz_abs: Mean of the accelerometer Z axis (unsigned)

. meanx_s: Mean of the accelerometer X axis (signed)

. meany_s: Mean of the accelerometer Y axis (signed)

. meanz_s: Mean of the accelerometer Z axis (signed)

The configuration for 6D position recognition described in this example runs at 26 Hz, computing features in a
window of 16 samples. The current consumption of the LSM6DSOX is around 163 pA at 1.8 V. Turning off the

Machine Learning Core, the current consumption of the LSM6DSOXwould be around 161 pA, so just 2 yA is the
additional current consumption of the Machine Learning Core.

AN5259 - Rev 1 page 24/41

ﬁ ANS5259

6D position recognition

Figure 25. 6D positions

z z

/ /

. : :

(a} (b)

z z I

/ /

. , :

© (d)

Figure 26. 6D decision tree

E six_d.txt - Motepad Eléu

File Edit Format WYiew Help

meanx_abs <= 0.3 -
meany_abs <= 0.3

| meanz_s <= 0.3: zdw

| meanz_s > 0.3: zup
meany_abs > 0.3

meanz_abs == 0.3

| meany_s <= 0.3: ydw
| meany_s > 0.3: yup
meanz_abs > 0.3 : others
meanx_abs > 0.3

meanz_abs == 0.3

meany_abs <= 0.3

| mean¥_s <= 0.3 : xdw
| meanx_s > 0.3: xup
meany_abs > 0.3 : others
meanz_abs = 0.3: others

Number of Leaves : g9

Size of the tree : 17

AN5259 - Rev 1 page 25/41

AN5259

Activity recognition for smartphone applications

3

3.4 Activity recognition for smartphone applications

The activity recognition algorithm described in this example is intended for smartphone applications, since all the
data logs collected for this purpose have been acquired with a smartphone carried in the user pocket. Hundreds
of data logs have been acquired from different people, since different people walk or run in different ways which

increases the complexity of the algorithm.

A small subset of all the possible activities has been selected in order to improve the accuracy of the recognition
algorithm. The subset of activities recognized in this example are: Stationary, Walking, Jogging and Biking.

Four features have been used (mean, variance, peak-to-peak, zero-crossing), and two different filters have been
applied to the accelerometer input data. The following table shows the activity recognition configuration.

Table 10. Activity recognition for smartphone configuration

Configuration Accelerometer, 26 Hz ODR, 4 g full scale

Window length 75 samples (around 3 seconds)
Band-pass on Accelerometer Norm
Filters
IIR2 on Accelometer Norm Squared
Mean

Variance
Features
Peak-to-peak

Zero-crossing
Stationary (0)

Walking (1)
Outputs
Jogging (4)

Biking (8)
0 for Stationary and Walking
Meta-classifier 1 for Jogging

4 for Biking

Figure 27 shows the decision tree generated by Weka. The cross-validation results of Weka (Figure 28) show that
96.7% of the instances have been classified in the correct way.

The configuration for the activity recognition example runs at 26 Hz, computing features in a window of 75
samples. The current consumption of the LSM6DSOX is around 165 pA at 1.8 V. Turning off the Machine
Learning Core, the current consumption of the LSM6DSOX would be around 161 pA, so just 4 pA is the additional
current consumption of the Machine Learning Core.

AN5259 - Rev 1 page 26/41

73 AN5259

Activity recognition for smartphone applications

Figure 27. Activity recognition for smartphone decision tree

[CAUsers\michele ferraina\Documents\Pragramma
File Edit Search View Encoding Langusge Settings Tools Macro Run Plugins Window ? X
OHE LA BB ing 1B 1IEIEAL TSNS RIE I
[= dectree ot Bl
1 ABSIVAR) on ACC V-2 0.032227 A
| RBS(VAR) on ACC V- 0.012635 =
1 | ABS (ENERGY) _on_filter BP_on ACC_V-2 <= 0.023254: Stationary (6€320.0/17.0)
| | ABS(ENERGY) on filter BP on_ACC_V-Z > 0.023254
1 I | ABS(MEAN) on ACC V~Z <= 0.34482%
I | | | ABS[ENEREY) on_filter_ITRZ_on_ACC_V-2 <= 64.8125: Biking (26.0)
I | | | ABS[ENERGY)_ on_filter IIRZ_on ACC_V-Z > €4.8125: Walking (3.0)
1 I | ABS(MEAN) on ACC V~Z > 0.944824
I I I | ABS(ZeroCross)_on filter IIRZ on ACC V-2 <= 11: Stationary (2393.0/103.0)
I | | | 3ABS(ZeroCross)_on_filver TIRZ_on_ACC_V-2 > 11
I I 1 | 1 ABS (MEAN) _on_ACC_V- 0.999023: Walking (13.0)
1 I 1 I | BBS(MEAN) on ACC > 0.993023 £
I | I | I | ABS(VAR)_on_ACC_V-2 <= 0.01123: Statiomary (27.0/1.0)
I | I | I | ABS (VAR)_on_ACC_V-2 > 0.0112 Biking (6.0}
| ABS(VAR) on ACC V-2 > 0.012&95
I | ABS(ENEREY) on filter IIR2Z on ACC V-2 <= 75.12§
I | | RBS({ZeroCross)_on_filter_TIRZ_on_RCC V-2 <= 8
1 | 1 | ABS (MEAN) _on_ACC_WV- 0.95752: Walking (25.0/2.0)
1 I 1 | ABS(MEAN) on ACC V-2 > 0.35752
I I | I | I 2BS (PeakToPeak)_on_ ACC V <= 0.371084
I | I | I | ABS(VAR)_on_ACC_V-~2Z <= 0.016113
1 I 1 I 1 I | ABS(ZeroCross)_on_£ilter IIRZ on ACC_V~Z <= 7: Staticnary (8.0/1.0) b
H I I 1 1 1 | | aBS(ZeroCross) on_filter IIRZ on ACC V-2 > 7: Biking (£.0)
z I | I | I | ABS(VAR)_omn_ACC_V-~Z > 0.016113: Biking (32.0)
2 I I 1 | 1 ABS (PeakToPeak)_on ACC V > 0.3710%4
28 I I 1 | 1 | ABS (VAR) _omn ACC V-2 <= 0.025391: Statiomary (33.0/1.0)
27 I | I | I | ABS(VAR)_on_ACC_V-2 > 0.025331
28 1 | 1 | 1 | 1 ABS (MEAN)_on_ACC_V~Z <= 0.577539: Stationary (7.0/3.0)
25 I I I I I | 1 ABS (MERN) on ACC V=2 > 0.977539: Biking (16€.0)
30 1 I | ABS(ZeroCross)_on_filter IIRZ_on ACC V-2 > 8
31 1 | 1 | ABS (ENERGY)_on_filter BP_on ACC_ V-2 <= 0.427734: Walking (152.0/5.0)
22 1 | | | RABS(ENERGY)_on_filter BP_on ACC V-2 > 0.427734
33 1 | 1 | 1 ABS (ENERGY) _on ACC V-2 <= T74: Biking (22.0/1.0)
32 I I I | BBS(ENEZREY)_on_ACC_V-Z > 74
3s 1 | 1 | 1 | ABS (ENERGY)_on_filter BP_on ACC V-2 <= 0.525351: Walking (5.0)
36 1 | 1 | 1 | ABS (ENERGY) _on_filter BP on ACC V-2 > 0.525391: Stationary (7.0/3.0)
37 |1 | ABS(ENEREY) on_filter IIRZ_on ACC_V-2 > 75.12§
38 | | | EBS(MEAN) on_ACC V-2 <= 1.13267
33 1 | 1 | ABS (ENERGY)_on_£filter BP_on ACC_V-~2 <= 0.072445: Stationary (€1.0]
40 1 I 1 | ABSI(ENERGY) on_filter BP_on ACC V-2 > 0.072449
41 1 11 | | RBS(VAR) on ACC_V~2Z <= 0.021873
4z 1 | 1 | 1 | RBS (MEAN) _on_ACC_W~2Z <= 0.933164: Biking (13.0/1.0)
43 I 1 I 1 | ABS(MEAN) on ACC V-2 > 0.9931&4
a2 I 1 I 1 I | ABS(ENERGY) on filter IIRZ on ACC V~Z <= 30.625
4= 1 1 1 1 1 1 1 1 2BS{ZeroCross)_on_filter_IIRZ on ACC V-2 <= 5
46 I | I | I | I I | ABS (VAR)_on ACC_V~2Z <= 0.018555
47 1 I 1 I 1 I 1 1 I | ABS(ENERGY) on filter BD on ACC V~Z <= 0.079529: Biking (5.0)
45 1 1 1 1 1 01 1 1 | | 2BS(ENERGY) on filter BP on ACC V-2 > 0.073529
43 1 | 1 | 1 | 1 1 | 1 | ABS (ENERGY)_on_filter BP on ACC_V-~2 <= 0.23536Z: Stationary (20.0)
€8 1 1 01 1 01 1 1 1 I 1 | ABS(ENERGY) on_filter BF_on ACC V-2 > 0.235362: Biking (7.0/3.0) “
51 I I I I I I 1 1 | ABS (VAR)_on_ACC V-2 > 0.018555: Biking (11.0/1.0)
2 | | 1 | 1 | 1 | ABS{ZeroCross)_on_filter_IIRZ on ACC V-2 > §
2 1 | 1 | 1 I 1 1 | ABS|ENERGY) on_filter_ IIRZ on ACC V-2 <= 77.5625
54 I I I I I I I I | 1 ABS (MERN) on ACC V-2 <= 0.998047: Staticnary (6.0)
= 1 1 1 1 1 01 1 1 1 | 2BS(MEEN) on ACC V-2 > 0.998047: Biking (10.0/1.0)
5 1 | 1 | 1 | 1 1 | ABS (ENERGY)_on_filter IIRZ_on ACC_V~Z > 77.56Z Stationary (132.0/23.0)
Nl == 1 1 1 1 1 | | ABS(ENERGY)_om_filver IIRZ_on ACC_W-2 > 50.625
58 I I I | 1 | 1 1 ABE (PeakToPeak) _on ACC V <= 0.323102
13- 1 | 1 | 1 | 1 1 | ABS (ENERCY) _on_filter IIRZ_on ACC_V~2 <= 82.75: Biking (25.0)
@ 1 1 1 1 1 1 1 1 | ABS(ENERGY) on_filter IIRZ on ACC V~Z > 92.75
61 | I 1 I 1 I 1 1 I | RBS(ENZRGY) on filter BD on ACC V~Z <= 0.290527
82 | I I I I I I I | I | ABS(PeakToPeak)_on ACC V <= 0.319824: Stationary (18.0)
N €3 1 | 1 | 1 | 1 1 | 1 | ABS (PeakToPeak)_on_ACC_V > 0.318832 Biking (5.0)
Ml e& 0 1 1 1 1 1 1 1 I | RBS(ENERGY)_on_filver BP_on ACC V~Z > 0.230527: Biking (20.0/2.0)
€5 I I I I 1 | 1 1 ABS (PeakToPeak) _on ACC V > 0.323102: Stationary (12.0)
€€ I | I | I ABS(VAR) _on_ACC V-2 > 0.021873
1| &7 1 | 1 | 1 | ABS (PeakToPeak)_on_ACC_V <= 0.352533: Biking (54.0/€.0)
L| BRG] I 1 I 1 | ABS(PeakToPeak) om ACC V > 0.352539
€51 1 1 1 1 | | RBS(MEAN) on ACC V-2 <= 108348
70 I | I | I | I I ABS(ENERGY) _on_ACC_V- = 84.8375
M7t 0 1 1 1 1 11 1 | ABS(ENERGY)_ on filter IIRZ on ACC V-2 <= £84.125
Ll I 0 1 1 1 1 1 1 | | ZXBS(MEAN) on ACC V~Z <= 1.02533
73] |] |] |]] |] | 2ABS (ENERCGY) _on_filter BP_on_ ACC_V-~2 <= 0.1843937: Stationary (7.0) e
Mormal text length:19,828 lines: 256 Ln:1 Col:1 Sel:0|0 Windows (CRLF) UTF-8 INS J

AN5259 - Rev 1 page 27/41

3

AN5259

Gym activity recognition

3.5

AN5259 - Rev 1

Figure 28. Weka cross-validation

=== Stratified cross-validation ===

=== Summary =—=

Correctly Classified Instances 30331 96.7311 %
Incorrectly Classified Instances 1025 3.2689 %
Kappa statistic 0.9421

Mean absolute error 0.0296

Root mean sgquared error 0.1202

Relative absclute error 10.4519 %

Root relative sguared errcr 31.9379 %

Total Number of Instances 31356

=== Detailed Accuracy By Class ===

TF Rate FP Rate FPrecision Recall F-Measure MCC ROC Rrea PRC Area Class

0.975 0.011 0.978 0.4975 0.978 0.965 0.987 0.9582 Stationary

0.9839 0.028 0.979 0.989 0.984 0.9682 0.990 0.9848 Walking

0.968 0.000 0.995 0.966 0.980 0.980 0.989 0.968 Jogging

0.769 0.014 0.815 0.789 0.791 0.775 0.944 0.763 Biking
Weighted Awvg. 0.987 0.021 0.9687 0.967 0.987 0.950 0.989 0.971

=== Confusicn Matrix ===

a b c d <-- classified as
9738 33 [i] 212 | & = Staticnary
12 17&&5 & 187 | b = Walking
1] 38 1151 4 | c = Jogging

225 310 a 1777 | d = Biking

Gym activity recognition
Gym activity recognition is intended as a fitness example for a wearable device, like a smartwatch or a wristband.

To implement this algorithm with a decision tree, all the data logs have been acquired using the device
(LSM6DSOX) mounted on a wristband.

The inputs of two sensors have been used (accelerometer and gyroscope at 104 Hz data rate) and six different
features computed in a window of 208 samples (mean, variance, peak-to-peak, min, max, zero-crossing), as
shown in Table 11.

The decision tree in Figure 29 generated by Weka allows recognizing five different gym activities including bicep
curls, jumping jacks, lateral raises, push-ups, squats.

The configuration for the gym activity recognition described in this example runs at 104 Hz, computing features in
a window of 208 samples. The current consumption of the LSM6DSOX is around 569 pA at 1.8 V. Turning off the
Machine Learning Core, the current consumption of the LSM6DSOX (with accelerometer and gyroscope at

104 Hz) would be around 556 pA, so 13 A is the additional current consumption of the Machine Learning Core
for this algorithm.

Table 11. Configuration for gym activity recognition

Configuration Accelerometer, 104 Hz ODR, 4 g full scale

Gyroscope, 104 Hz ODR, 2000 dps full scale
Window length 208 samples (around 2 seconds)

Mean

Variance

Peak-to-peak
Features

Min

Max

Zero-crossing

page 28/41

m ANS5259

Gym activity recognition

Configuration Accelerometer, 104 Hz ODR, 4 g full scale

No activity (0)

Bicep curls (4)

Jumping jacks (5)
Outputs

Lateral raises (6)

Push-ups (7)

Squats (8)

0 for No activity

Meta-classifier
2 for all the other outputs

AN5259 - Rev 1 page 29/41

m ANS5259

Gym activity recognition

Figure 29. Gym activity recognition decision tree

I:_Jh{ CAUsers\michele ferraina\Documents\Programma
File Edit Search View Enceding Language Settings Tools Macre Run Plugins X
e Y ST R e R Do > 5= 05 R |
[= dectree bt E!Il
1 ABS(VAR) on ACC V-2 <= 0_032227 -
Z | ABS(VAR)_on ACC V~Z <= 0.012895 A
ER| | RBS(ENERGY) on filter BP on ACC V~Z <= 0.023254: Statiomary (€320.0/17.0)
4 | | ABS(ENERGY) on filter BP on ACC_V~Z > 0.023254
5 | 1 | BBS(MEAN) on_ACC_V~Z <= 0.344824
& | 1 1 | BBS(ENERGY) on_filter IIRZ on ACC V-2 <= 64_8125: Biking (26.0)
7 1 1 | RBS(ENERGY)_ on_filter IIRZ on_ACC_V~Z > €4.8125: Walking (8.0)
8 | 1 | ABS(MEAN) on ACC V~Z > 0.944824
9 | | | | 2BS(ZeroCross)_on_filter IIRZ on ACC V-2 <= 1ll: Stationary (2333.0/103.0)
w0 | 1 1 | BBS(ZeroCross)_om_filter IIR2_on ACC_V-2 > 11
11 | 1 1 1 | ABS(MEAN) on ACC V-2 <= 0.995023: Walking (13.0)
1 1 1 1 1 | ABS(MEAN)_on_ACC_V~Z > 0.999023 £
1z | 1 1 1 | | ABS(VAR)_on ACC V-2 <= 0.01123: Stationary (27.0/1.0)
14 | 1 1 1 | | RBS(VAR)_on ACC V-2 > 0.01123: Biking (6.0}
1= | ABS(VAR)_on_ACC V~Z > 0.012695
16 | | RBS(ENERGY) on filter ITRZ on ACC V-2 <= 75.125
17 | 1 | BABS{ZeroCross)_on_filter IIRZ on RCC V-2 <= 8
8 | 1 1 | BBS(MEAN)_on_AGCC_V~Z <= 0.35752: Walking (25.0/2.0)
13 | 1 1 | BBS(MERN) on_ACC V-2 » 0.95752
I 20 | 1 1 1 | RBS(PeakToPeak)_on ACC_V <= 0.3710%4
21 | 1 1 1 | | RBS(VER)_on ACC V-2 <= 0.016113
2z | 1 1 1 | 1 | BBS{ZeroCross)_on filter ITRZ on ACC V-2 <= 7: Stationary (8.0/1.0) P
M| 2= 1 1 1 | 1 | BBS(ZeroCross)_on filter IIRZ_on ACC V~Z > 7: Biking (6.0}
24 | 1 1 1 | | RBS(VAR)_on ACC V-2 > 0.016113: Biking (32.0)
25 | | | | | ABS (PeakToPeak)_on ACC WV > 0.371034
26 | 1 1 1 | | ABS(VAR)_on ACC V-2 <= 0.025391: Statiomary (33.0/1.0)
27 | 1 1 1 | | RBS(VAR)_on ACC V-2 > 0.025391
28 | 1 1 1 | 1 | BBS(MEAN)_on_ACC_V~Z <= 0.37753%: Statiomary (7.0/3.0)
23 | 1 1 1 | 1 | ABS(MEAN) on ACC V-2 > 0.877533: Biking (16.0)
30 | 1 | ABS(ZeroCross)_on_filter IIRZ on RCC V-2 > B
31 | 1 1 | BBS(ENERGY)_on_filter BP_on ACC V-2 <= 0.427734: Walking (152.0/5.0)
3z | 1 1 | BBS(ENERGY) on_filter BP on ACC V-2 > 0_.427734
33 | 1 1 1 | RBS(ENERGY)_on_ACC_V~Z <= 74: Biking (22.0/1.0}
L 1 1 1 | ABS(ENERGY) on ACC V-2 > 74
35 | 1 1 1 | | RBS(ENERGY) on filter BP_on_ ACC_V~2 <= 0.525391: Walking (5.0}
3. | 1 1 1 | | RBS(ENERGY) on_filter BP on ACC_V~Z > 0.526391: Stationary (7.0/3.0)
37 | | RBS(ENERGY) on filter ITRZ on ACC V-2 > 75.125
38 | | | ABS(MEAN) _on_ACC_V~2Z <= 1.13867
EER 1 1 | BBS(ENERGY) on filter BP on ACC V-2 <= 0.072449: Stationary (61.0)
40 | 1 1 | BBS(ENERGY) on_filter BP on ACC V-2 > 0.072445
a1 | 1 1 1 | RBS(VAR)_on_ACC_V~2 <= 0.021373
az | 1 1 1 | | ABS5(MEAN) on ACC V-2 <= 0.593164: Biking (13.0/1.0]
43 | 1 1 1 | | RBS[MEAN) on ACC _V~Z » 0.9931&¢
a2 | 1 1 1 | 1 | BBS(ENEAGY)_on_filter IIRZ_on ACC_V~2 <= 30.625
I == 1 1 1 | 1 1 | BBS{ZeroCross)_on filter ITRZ on ACC V-2 <= §
4 | 1 1 1 1 1 1 I | RBS(VAR)_on ACC_V~Z <= 0.018555
a7 | 1 1 1 | 1 1 1 | | ABS(ENERGY) on filter BP on RCC V-2 <= 0.079529: Biking (5.0)
8 | 1 1 1 | 1 1 1 | | RBS(ENERGY) on filter BPF_on_ ACC_V~2 » 0.079529
a3 | 1 1 1 | 1 1 1 | 1 | ABS(ENERGY)_on_filter BP on ACC V~Z <= 0.235962: Statiomary (20.0)
50 | 1 1 1 | 1 1 1 | 1 | ABS(ENERGY) on filter BP on ACC V-2 > 0.235562: Biking (7.0/3.0)
51 | | | | | | | | | ABS (VAR) _on ACC V-2 » 0.018555: Biking (11.0/1.0)
52 | 1 1 1 | 1 1 | BBS(ZeroCross)_on filter ITRZ_om ACC V-2 > §
53 | 1 1 1 | 1 1 1 | ABS(ENERGY) on_filter IIRZ on_RCC_ V-2 <= 77.5625
52 | 1 1 1 | 1 1 1 | | ABS(MEAN) on_ACC_V~2 <= 0.998047: Stationary (£.0)
55 | 1 1 1 | 1 1 1 | | ABS(MEAN) on ACC V-2 > 0.953047: Biking (10.0/1.0)
1) | | | | | | | | | ABS (ENERGY)_on_filter IIRZ on ACC V-2 > 77.5625: Stationary (132.0/23.0)
M s= 1 1 1 | 1 | ABS(ENERGY)_on_filter IIRZ_on ACC V-2 > 90.625
58 | 1 1 1 | 1 1 | 2BS(PeakToPeak)_on ACC V <= 0323102
53 | 1 1 1 | 1 1 1 | RBS(ENERGY)_on_filter IIRZ_on ACC_V~Z <= 92.75: Biking (25.0)
&0 | 1 1 1 | 1 1 1 | RBS(ENERGY) on filter IIRZ on ACC V-2 > 52.7§
61 | 1 1 1 | 1 1 1 | | RBS(ENERGY) on filter BP on ACC V-2 <= 0.290527
&2 | 1 1 1 | 1 1 1 | 1 | BBS(PeakToPeak]_on ACC V <= 0.3189824: Stationary (18.0)
M| &= 1 1 1 1 | 1 1 1 | 1 | ABS(PeakToPeak] on ACC V > 0.319824: Biking (5.0}
M| ©2 | | | | | | | | | | ABS(ENERGY)_on_filter BPF_on ACC V-2 » 0.230527: Biking (20.0/2.0)
&5 | 1 1 1 | 1 1 | BBS(PeakToPeak)_on ACC_V > 0.329102: Stationary (12.0)
66 | 1 1 1 | ABS(VAR) on_ACC_V~2 » 0.021573
Ml s7 1 1 1 | | ABS(PeakToPeak)_on ACC _V <= 0.35253%: Biking (54.0/6.0)
M| sa 1 1 1 1 | | ABS(PeakToPeak) on ACC V > 0.35253%
& 1 1 1 1 1 1 | ABSIMEAN)_ on ACC V~Z <= 1.06348
70| 1 1 1 | 1 1 | BBS(ENERGY)_ on ACC V~Z <= 84.937%
/| e S 1 1 1 | 1 1 1 | ABS(ENERGY) on_filter IIRZ on_RACC_ V-2 <= 84.125
M 72+ ¢ 1 1 1 1 1 1 1 | RBS(MEBEN)_ on ACC_V~Z <= 1.02539
73| 1 1 | | 1 1 | | 1 | ABS(ENERGY) on filter BP on ACC V~Z <= 0.184937: Staticmary (7.0) -
MNormal text file length: 19,828 lines: 256 Ln:1 Col:1 Sel:0[0 Windows (CR LF) UTF-8 INS

AN5259 - Rev 1 page 30/41

AN5259
Appendix

A1

AN5259 - Rev 1

Appendix

WEKA

Weka is free software developed at the University of Waikato, New Zealand. It cointains a collection of
visualization tools and algorithms for data analysis and predictive modeling, together with graphical user
interfaces for easy access to these functions.

All of Weka'’s techniques are predicated on the assumption that the data is available as one flat file or relation,
where each data point is described by a fixed number of attributes.

An ARFF (Attribute-Relation File Format) file is an ASCII text file that describes a list of instances sharing a set of
attributes. The ARFF files have two distinct sections, as shown in Figure 30: a header section containing the
attributes (features, classes), and a data section containing all the feature values together with the corresponding
class to be associated to that set of features.

Figure 30. ARFF example

Bie fdi Sewch Yew [pcodng Langeage Seftings Tools oo Bun Plegins indow | X
cilEHE s iR daRidcianitsBRIS1EIROIisEEnRIE

el

T frelanies "MLg"

3 fattribuce ABS (MEAN)

Battribuce ABS (MEAN}
Bartribune ABS (MEAN)

#atrribure ABS(ENERSY)_on_filter BF_on ACC V-2 mmeric
#atcribuse ABS{ENERSY) _on_tilver_ITRZ e

24, Staricnsry
107422, Suanicmary
+ 0.0136719, Statisnary

L0313, 2.02656e-06,
03223, 4.E49168-0,

00330624, 0. 039EIE
08491278, ©.03937H -l
.00541306, 0.08936TT, 1.01468, 1.03138, 3.3
. 1.0156F, 1.03613, 1.9
+ 1.01488, 1.83135, 3.8

72606, 8.0009TESED, 0.BOONIESED,
$04e-05, 0.0029296%, 0.00155312,
62; 0.006B35%4, BO.D6ZS, 0.
78906, 0.00SBSSIE, BO.128, O.

Statlonary

9, Staticnary
Staticsary

1, Staticaary
167422, Stationary
53, Sraticascy

Ty 103N 3635000
LCOELEENT, O.03EETR4, 1.01367, 1.03613, 3.9938%e-04,
8430840, ©.089308, 1.03468, 1.03333, 3,19908e-04, E.
.OLT4408, O.0188163, 1.02051, 1.04188, €. 4373e-04, 2.BE10
5547, 0.014183,
3655, 30135423,

E¥39m-06, 000488

128, Staticosry
2, Starionary
ELonaTy
Staticnary

0050TEIZ, 1
0.000332353,
LA 95, Biaidd O % .00 . 3
B1.1874, 0.0018442, B1.TH, 0, 0, O.013

length : 415,755 lwnei : 31,380 la:l Col:15 Sal:0|0 Windcws (CRLF) UTF-8 NS

JQIBEN, B.06004, 3,06046e-04, 1.aR00Re-06, O, 0.006E3IM, B
. 1.01953, 104109, €.4373e=04, 2.9807%e=06, 000292069, 0.004BETE

9, Smaricsary =

Figure 31. Weka GUI Chooser

Applications

Explorer

The University

of Waikato Experimenter J

Waikato Envircnment for Knowledge Analysis
Version 3.8.1

{c) 1999 - 2018

The University of Waikato

Hamilton, New fealand

Waorkbench J

| |
l KnowledgeFlow J
l
l

Simple CLI J

page 31/41

AN5259
WEKA

3

When launching Weka, the Weka GUI Chooser window appears (Figure 31), and the “Explorer” section,
selectable through the first button, is the Weka main user interface.

When selecting the Weka Explorer a new interface appears (Figure 32). Several panels are available in the
Explorer interface:

. The Preprocess panel has facilities for importing data.

. The Classify panel allows applying classification and regression algorithms to the dataset in order to
estimate accuracy of the resulting predictive model and to visualize erroneous predictions.

. The Associate panel provides access to association rule learners that attempt to identify all important
interrelationships between attributes in the data.

. The Cluster panel gives access to the clustering techniques in Weka.
. The Select attributes panel provides algorithms for identifying the most predictive attributes in a dataset.
. The Visualize panel shows a scatter plot matrix.

In this appendix section, only the Preprocess and Classify panels are described.
The Preprocess panel is shown in Figure 32, it allows loading an ARFF file from the “Open file” button.

Figure 32. Weka Explorer

Preprocess || Classify | Cluster | Associate | Select attributes | Visualize

l Openfile... Jl Open URL... Jl Open DE... Jl Generate... J

Filter
-

l Choose J|None

Current relation Selected attribute
r "

Relation: Mone Attributes: MNone Mame: Mone Type: Mone
Instances: Mone Sum of weights: None Missing: Mone Distinct. Mone Unique: Mone

Attributes
-

All Mone Pattern

v visuaiize Al |

Status
P

Welcome to the Weka Explorer

When the ARFF file has been loaded, the preprocess panel shows all the attributes (features and classes) of the
imported ARFF file. The attributes can be visualized in a graphical way and the user can select the attributes to
be used for the classification.

AN5259 - Rev 1 page 32/41

3

AN5259
WEKA

Figure 33. Weka Explorer - Attributes

[Openfile...]l Open URL... Jl OpenDB... Jl Generate... J

Filter
-

[Choose J|Nune

Current relation Selected attribute
r r

-

Relation: ProgrammableSensor Aftributes: 3 Mame: ABS(VAR)_on_ACC_V Type: Mumeric

Unique: 60 (23%)

Instances: 264 Sum of weights: 264 Missing: 0 (0%) Distinct: 77

Statistic Value

Minimum 0
Maximum 0.596

Mean 0.059
StdDev 0.138

AR)_on_ACC_V

- Class: class (Nom ¥ || Visualize All
2 D ABS(PeakToPeak)_on_ACC_V l () |]l J
3 [class

After choosing the attributes, a classifier can be configured in the Classify panel of Weka Explorer (Figure 34).

There are many classifiers available in Weka, choosing the classifier J48 (under trees), a decision tree can be
generated (Figure 35. Weka Classify J48).

AN5259 - Rev 1

page 33/41

AN5259
WEKA

3

Figure 34. Weka Classify

[Preprocess TCJa.ssmf T Cluster T Associate T Select attributes T Visualize]

Classifier
p-

v [E weka
v E classifiers

> [ﬁ' bayes

Lo [ﬁ'funcﬁons

> [ey

Lo ﬁ' meta

Lo ﬁ' misc

Lo ﬁ‘ rules

v [Etrees
E] DecisionStump
E] HoeffdingTree

LMT

RandomForest
RandomTree
REPTree

Figure 35. Weka Classify J48

[Preprocess TCJa.ssmf T Cluster T Associate T Select attributes T Visualize]
rClassilier

| choose J|.J4s-c 0.25-M 2

Test options Classifier output
r r

~

I Use training set J48 pruned tree
(_) Supplied test set Set...
(®) Cross-validation Folds

(_) Percentage split

l More options...

{ (Nom) class

Start Stop
Result list {right-click for options)
-

Time taken to build model: 0.01 seconds

ELS

AN5259 - Rev 1 page 34/41

AN5259
WEKA

3

Many parameters can be changed in the classifier section (Figure 36), and different decision trees can be
generated by clicking the “Start” button.

All the decision trees generated can be compared in terms of a correctly classified instance and confusion matrix
(parameters calculated for every decision tree generated).

Figure 36. Weka J48 classifier parameters

weka.classifiers.trees. J48

About

-
Class for generating a pruned or unpruned C4. Maore

| Capabiliies |

batchSize | 100

binarySplits | False

collapseTree [True

confidenceFactor 025

debug [False

doMotCheckCapabilities [False

doMotMakeSplitPointactualvalue [False

minNumObj 2

numDecimalPlaces 2

numFolds 2

reducedErrorPruning [False

savelnstanceData [False

seed 1

subtreeRaising [True

unpruned [False

uselLaplace [False

useMDLcorrection [True

J l Cancel

AN5259 - Rev 1 page 35/41

m ANS5259

Revision history
Table 12. Document revision history

28-Jan-2019 1 Initial release

AN5259 - Rev 1 page 36/41

m ANS5259

Contents

Contents
1 Machine Learning Core in the LSMBDSOX...........oiiiiiiiiiiiiiiiiiiiinnnnnnnnns 2
1.1 DU .« .o e e e e 4
1.2 FIers . .o 5
1.21 Filter coefficients 6
1.3 Featureso 7
1.31 AN, . o 8
1.3.2 VarianCe 8
1.3.3 ENergy . .o 8
134 Peak-to-peak. 8
1.3.5 ZEIO-CrOSSING & o o v vttt et 8
1.3.6 POSItive Zero-CrosSsingo 8
1.3.7 Negative Zero-CroSSiNgttt 8
1.3.8 Peak detector 8
1.3.9 Positive peak detector. 9
1.3.10 Negative peak detector. e 9
1341 MiNiImMUM . L 9
1.312 0 MaximuUum .o 9
1.4 DeCiSION tree 9
141 Decision tree limitations in the LSMBDSOX i 10
1.5 Meta-Classifier 11
1.5.1 Meta-classifier limitations in the LSM6DSOX i 11
1.6 Finite State Machine interface. 11
2 Machine Learning Core tools ...t it iiae e iiannnnnnnnnns 12
21 Unico GUI. ... e 12
2.2 Decision tree generation i 14
2.3 Configuration procedure. i 16
3 Decisiontree examplesot i i it e i e 23
3.1 Vibration Monitoring o 23
3.2 Motion INtensity o e 24
3.3 6D position recognition. 24

AN5259 - Rev 1 page 37/41

m ANS5259

Contents
34 Activity recognition for smartphone applications 26
3.5 Gym activity recognition e 28
Y o 7= 4 e |G 31
A WEKA . 31
ReVISION NiStOry i i i i i e ettt tasa i aaas s snnaasananaaannnnns 36
L0 o 1 =T 4 37
Listof tables ... i ittt it ee it iaa i aa i a s 39
List Of figQUIeS. i it ee et ieaa s teaaa i iaa e na e 40

AN5259 - Rev 1 page 38/41

m ANS5259

List of tables

List of tables

Table 1. Machine Learning Core output datarates e 2
Table 2. Filter coefficients 6
Table 3. Examples of filter coefficients e 6
Table 4. Features. 8
Table 5. Decisiontree resulls. 10
Table 6. Decision tree interrupts.o 10
Table 7. Decision tree limitations in the LSMBDSOX. 10
Table 8. Meta-classifier example 11
Table 9. Meta-classifier limitations in the LSMBDSOX 11
Table 10. Activity recognition for smartphone configuration 26
Table 11. Configuration for gym activity recognition 28
Table 12. Document revision history 36

AN5259 - Rev 1 page 39/41

m ANS5259

List of figures

List of figures

Figure 1. Machine Learning Core in the LSMBDSOX 2
Figure 2. Machine Learning Core blocks 3
Figure 3. Filter basic element. e 5
Figure 4. Decision tree Node 9
Figure 5. Unico Load/Save tab. 13
Figure 6. Machine Learning Core tool - Data Patterns e 13
Figure 7. Machine Learning Core tool - Configuration 14
Figure 8. WEKa PrePrOCESS o ot e e e e 15
Figure 9. Weka Classifyo 15
Figure 10. Decision tree format 16
Figure 11. Configuration procedure 17
Figure 12. Assigningaresulttoadatapattern 18
Figure 13. Configuration of Machine Learning Core 18
Figure 14. Configuration of flters 19
Figure 15. Configuration of features 19
Figure 16. ARFF generation 19
Figure 17. ARFF file . . . oo 20
Figure 18. Configuration of results and decision tree. 20
Figure 19. Meta classifier and device configuration. 21
Figure 20. Unico load configuration 21
Figure 21. Unico Data Windowo 22
Figure 22. Unico - Machine Learning Core source registers.ttt e e e e 22
Figure 23. Vibration monitoring decisiontree 23
Figure 24. Motion intensity decision tree 24
Figure 25. BD POSItiONS 25
Figure 26. BD decCision tree 25
Figure 27. Activity recognition for smartphone decisiontree. 27
Figure 28. Weka cross-validation 28
Figure 29. Gym activity recognition decision tree 30
Figure 30. ARFF example 31
Figure 31. Weka GUI ChooSer. oo e e e e 31
Figure 32. WekKa EXpPlorer o 32
Figure 33. Weka Explorer - Attributes 33
Figure 34. Weka Classify 34
Figure 35. Weka Classify JA48 34
Figure 36. Weka J48 classifier parameters 35

AN5259 - Rev 1 page 40/41

ﬁ AN5259

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics — All rights reserved

AN5259 - Rev 1 page 41/41

	Introduction
	1 Machine Learning Core in the LSM6DSOX
	1.1 Inputs
	1.2 Filters
	1.2.1 Filter coefficients

	1.3 Features
	1.3.1 Mean
	1.3.2 Variance
	1.3.3 Energy
	1.3.4 Peak-to-peak
	1.3.5 Zero-crossing
	1.3.6 Positive zero-crossing
	1.3.7 Negative zero-crossing
	1.3.8 Peak detector
	1.3.9 Positive peak detector
	1.3.10 Negative peak detector
	1.3.11 Minimum
	1.3.12 Maximum

	1.4 Decision tree
	1.4.1 Decision tree limitations in the LSM6DSOX

	1.5 Meta-classifier
	1.5.1 Meta-classifier limitations in the LSM6DSOX

	1.6 Finite State Machine interface

	2 Machine Learning Core tools
	2.1 Unico GUI
	2.2 Decision tree generation
	2.3 Configuration procedure

	3 Decision tree examples
	3.1 Vibration monitoring
	3.2 Motion intensity
	3.3 6D position recognition
	3.4 Activity recognition for smartphone applications
	3.5 Gym activity recognition

	A Appendix
	A.1 WEKA

	Revision history
	Contents
	List of tables
	List of figures

