‘— AN5273
’l life.augmented

Application note

LSM6DSOX: Finite State Machine

Introduction
This document is intended to provide information on the use and configuration of ST's LSM6DSOX embedded Finite State
Machine.

The LSM6DSOX can be configured to generate interrupt signals activated by user-defined motion patterns. For this purpose, up
to 16 embedded finite state machines can be programmed independently for motion detection.

AN5273 - Rev 2 - February 2019 www.st.com

For further information contact your local STMicroelectronics sales office.

https://www.st.com/en/product/lsm6dsox

m ANS5273

Finite State Machine (FSM)

1 Finite State Machine (FSM)

1.1 Finite State Machine definition

A Finite State Machine (FSM) is a mathematical abstraction used to design logic connections. It is a behavioral
model composed of a finite number of states and transitions between states, similar to a flowchart in which it is
possible to inspect the way logic runs when certain conditions are met. The state machine begins with a Start
state, goes to different states through transitions dependent on the inputs, and can finally end in a specific state
(called Stop state). The current state is determined by the past states of the system. The following figure depicts
the flow of a generic state machine.

Figure 1. Generic state machine

START STATE

STATE #1

Condition 1 satisfied?

STATE #2

Condition 2 satisfied?

STATE #3

Condition 3 satisfied?

STOP STATE

AN5273 - Rev 2 page 2/68

‘_ ANb5273
’l Finite State Machine in the LSM6DSOX

1.2 Finite State Machine in the LSM6DSOX

The LSM6DSOX works as a combo accelerometer-gyroscope sensor, generating acceleration and angular rate
output data; it is also possible to connect an external sensor (e.g. magnetometer) by using the sensor hub feature
(Mode 2). All these data can be used as input of up to 16 programs in the embedded Finite State Machine (refer

to the following figure).

Figure 2. State machine in the LSM6DSOX

DEVICE ACC [LSB] >
GYR [LSB] SIGNAL >
CONDITIONING

FSM FSM Output X

EXT. SENSOR (MAG) [LSB]

(optional)

The FSM structure is highly modular: it is possible to easily write up to 16 programs, each one able to recognize a
specific gesture.

All 16 finite state machines are independent: each one has its dedicated memory area and it is independently
executed. An interrupt is generated when the end state is reached or when some specific command is performed.
Typically, the interrupt is generated when a specific gesture is recognized.

AN5273 - Rev 2 page 3/68

ANS5273
Signal Conditioning block

3

2 Signal Conditioning block

The Signal Conditioning block is shown in the following figure and it is used as the interface between incoming
sensor data and the FSM block. This block is needed to convert the output sensor data (represented in [LSB])
with the following unit conventions:

* accelerometer data in [g];
* gyroscope data in [rad/sec];
« external sensor: if it's a magnetometer, data have to be converted to [G].

Figure 3. Signal Conditioning block

SIGNAL CONDITIONING

ACC [LSB] —i — ACC [g]
GYR[LSB] ——| SENSITIVITIES [| NORM GYR" [rad/sec]
EXT. SENSOR (MAG) [LSB] —— - EXT. SENSOR (MAG)" [G]

This block is intended to apply the sensitivity to [LSB] input data, and then convert these data in HFP format
before passing them to the FSM block. In greater detail:

. LSM6DSOX's accelerometer data conversion factor is automatically handled by the device;
. LSM6DSOX's gyroscope data conversion factor is automatically handled by the device;

. external sensor data conversion factor is not automatically handled by the device: the user has to follow the
procedure below in order to set properly the (e.g.) magnetometer conversion factor in the device. Please
note that magnetometer data have to be converted in [G], expressed in HFP format.

Example: LIS2MDL magnetometer sensitivity is 1.6 mG/LSB — 0.0015 G/LSB — 1624h HFP; this is the default
external sensor sensitivity value for the LSM6DSOX device.
Procedure to apply the correct conversion factor for the external magnetometer data:

1. Write 80h to register 01h /I Enable embedded function registers access

2. Write 40h to register 17h /I PAGE_RW (17h) = ‘40h’: enable write operation

3. Write 01h to register 02h /I PAGE_SEL (02h) = ‘01h’: select embedded advanced features registers page 0

4. Write BAh to register 08h /I PAGE_ADDRESS (08h) = ‘BAh’ (MAG_SENSITIVITY_L address)

5. Write [LSB] conversion factor /I Write [LSB] conversion factor value to register MAG_SENSITIVITY_L (BAh)
(LIS2MDL example, 24h) to register 09h

6. Write [MSB] conversion factor /I Write [MSB] conversion factor value to register MAG_SENSITIVITY_H (BBh)
(LIS2MDL example, 16h) to register 09h

7. Write 01h to register 02h /I PAGE_SEL (02h) = ‘01h’: select embedded advanced features registers page 0

8. Write 00h to register 17h /I PAGE_RW (17h) = ‘00h’: disable read / write operation

9. Write 00h to register 01h /I Disable embedded function registers access

In addition to the conversion to HFP format, the Signal Conditioning block computes the norm of the input data,

defined as follows:
V= \/x2+yz+z2

The norm of the input data can be used in the state machine programs, in order to guarantee a high level of
program customization for the user.

AN5273 - Rev 2 page 4/68

ﬁ AN5273

FSM block

3 FSM block

Output data signals coming from the Signal Conditioning block are sent to the FSM block which is detailed in the
following figure. The FSM block is mainly composed of:

. a general FSM configuration block: it affects all programs and includes some registers that have to be
properly initialized in order to configure and customize the entire FSM block;

. a maximum of 16 configurable programs: each program processes input data and generates an output.

Figure 4. FSM block

FSM

CONFIGURATION
PROGRAM;, Output
ACC'[g] ——— PROGRAM;
GYRY [rad/sec] — PROGRAM, Output
PROGRAM, 2
T
EXT. SENSOR (MAG)" [G] —— !
I
I
' PROGRAM, Output

PROGRAM,,

FSM configuration and program blocks are described in the following sections.

AN5273 - Rev 2 page 5/68

ANS5273

Configuration block

3

3.1 Configuration block
The Configuration block is composed of a set of registers involved in the FSM configuration (FSM ODR,
interrupts, programs configuration, etc.).

The embedded function registers can be used to properly configure the FSM: these registers are accessible when
the FUNC_CFG_EN bit is set to ‘1" and the SHUB_REG_ACCESS bit is set to ‘0’ in the FUNC_CFG_ACCESS
(01h) register.

The LSM6DSOX device is provided with an extended number of registers inside the embedded function register
set, called embedded advanced features registers, that are divided in pages. A specific read / write procedure
must be followed to access the embedded features registers. Registers involved in this specific procedure are the
following:

. PAGE_SEL (02h): it selects the desired page;

. PAGE_ADDRESS (08h): it selects the desired register address in the selected page;

. PAGE_VALUE (09h): it sets the value to be written in the selected register (only in write operation);
. PAGE_RW (17h): it is used to select the read / write operation.

The script below shows the generic procedure to write a YYh value in the register having address XXh inside the
page number Z of the embedded features registers set:

1. Write 80h to register 01h // Enable embedded function registers access

Write 40h to register 17h // PAGE_RW (17h) = ‘40h’: enable write operation

Write Z1h to register 02h // PAGE_SEL (02h) = ‘Z1h’: select embedded advanced features registers page Z
Write XXh to register 08h // PAGE_ADDRESS (08h) = ‘XXh’: XXh is the address of the register to be configured
Write YYh to register 09h // PAGE_VALUE (09h) = “YYh’: YYh is the value to be written

Write 01h to register 02h // PAGE_SEL (02h) = ‘01h’: select embedded advanced features registers page 0. This is
needed for the correct operation of the device.

Write 00h to register 17h // PAGE_RW (17h) = ‘00h’: disable read / write operation

o o & 0D

N

8. Write 00h to register 01h // Disable embedded function registers access

Note: After a write transaction, the PAGE_ADDRESS (08h) register is automatically incremented.

Program configurations must be written in the embedded advanced features registers, starting from the register

address indicated by the FSM_START_ADD_L (7Eh) and FSM_START_ADD_H (7Fh) registers. All programs

have to be written in consecutive registers, including two important aspects:

. both the PAGE_SEL (02h) register and PAGE_ADDRESS (08h) register have to be properly updated when
moving from one page to another (i.e. when passing from page 03h, address FFh to page 04h, address
00h). The LSM6DSOX device provides 8 pages that can be addressed through the PAGE_SEL (02h)
register. To address the last page, PAGE_SEL (02h) has to be set to 71h;

. program SIZE byte must be an even number: if it is odd, an additional STOP state has to be added at the
end of the instruction section.

For a detailed example on how to configure the entire FSM, refer to FSM configuration example.

AN5273 - Rev 2 page 6/68

AN5273

Configuration block

3

311 FSM registers

The table given below provides a list of the registers related to the FSM and the corresponding addresses.

Table 1. FSM registers

I T

EMB_FUNC_STATUS

“MAINPAGE 35h IS_FSM_LC 0
FSM_STATUS_A
" MAINPAGE 36h IS_FSM8 IS_FSM7 | IS_FSM6é @ IS_FSM5 & IS_FSM4 = IS_FSM3 | IS_FSM2 | IS_FSM1
FS",('A—ASIL'AQLUGSE—B r 37h IS_FSM16 | IS_FSM15 | IS_FSM14 | IS_FSM13 | IS_FSM12 | IS_FSM11 | IS_FSM10 IS_FSM9
3.1.1.1 EMB_FUNC_STATUS_MAINPAGE (35h)
The EMB_FUNC_STATUS_MAINPAGE (35h) register contains interrupt status information about the long
counter.

Table 2. EMB_FUNC_STATUS_MAINPAGE (35h) register

mmmmmmm

IS_FSM_LC

The IS_FSM_LC bit is automatically set to ‘1’ when the current long counter value, available in the embedded
functions FSM_LONG_COUNTER_L (48h) and FSM_LONG_COUNTER_H (49h) registers, is equal to the long
counter timeout value configured in the FSM_LC_TIMEOUT_L (7Ah) and FSM_LC_ TIMEOUT_H (7Bh) registers.

3.1.1.2 FSM_STATUS_A_MAINPAGE (36h)
The FSM_STATUS_A_MAINPAGE (36h) register contains interrupt status information about programs 1-8.

Table 3. FSM_STATUS_A_MAINPAGE (36h) register

e Es [Es [Em e [oEe [om0 [ED

IS_FSM8 IS_FSM7 IS_FSM6 IS_FSM5 IS_FSM4 IS_FSM3 IS_FSM2 IS_FSM1

The IS_FSMx bit is set to ‘1’ when the OUTC / CONT / CONTREL command is performed in FSM programy.
Refer to the dedicated chapter / paragraph for additional details about these commands.

3.1.1.3 FSM_STATUS_B_MAINPAGE (37h)
The FSM_STATUS_B_MAINPAGE (37h) register contains interrupt status information about programs 9-16.

Table 4. FSM_STATUS_B_MAINPAGE (37h) register

Ee Es [Es [Es [Es [EE [om0 [E]

IS FSM16 | IS_FSM15 | IS_FSM14 | IS_FSM13 | IS_FSM12 | IS_FSM11 IS_FSM10 IS_FSM9

The IS_FSMx bit is set to ‘1’ when the OUTC / CONT / CONTREL command is performed in FSM programy.
Refer to the dedicated chapter / paragraph for additional details about these commands.

AN5273 - Rev 2 page 7/68

ANS5273

Configuration block

3

3.1.2 FSM embedded function registers

Table 5. Embedded function registers

I 2 I M O N T T
riw 05h o - - o

EMB_FUNC_EN_B 0 o 0 FSM_EN
EMB_FUNC_INT1 tw | OAh | INTI_FSM_LC® o - - - o o o
FSM_INT1_A dw | OBh | INTI_FSM8® | INTI_FSM7®) | INTI_FSM6? | INTA_FSM5 | INT1_FSM4® | INTI_FSM3® | INT1_FSM2? | INTI_FSM1®
FSM_INT1_B dw | 0Ch | INTI_FSM16? | INTI_FSM15) | INT1_FSM14®) INT1_FSM13%) INT1_FSM12% | INTI_FSM11? | INTI_FSM10® | INT1_FSM9®
EMB_FUNC_INT2 tw | OEh | INT2_FSM_LC® o - - - o o o
FSM_INT2_A dw | OFh | INT2_FSM8® | INT2_FSM7) | INT2_FSM6® | INT2_FSM5C | INT2_FSM4®) | INT2_FSM3®) | INT2_FSM2 | INT2_FSM1®)
FSM_INT2_B dw | 10h | INTZ_FSM167 | INT2_FSM15() | INT2_FSM14C) | INT2_FSM13%) INT2_FSM129 | INT2_FSM11% | INT2_FSM10®) | INT2_FSM9®
EMB_FUNC_STATUS r o 12n IS_FSM_LC 0 ; } . 0 0 0
FSM_STATUS_A r o 13n IS_FSM_8 IS FSM_7 | ISLFSM_6 | IS_FSM5 | IS FSM.4 | IS FSM_3 IS_FSM_2 IS_FSM_1
FSM_STATUS_B A ISFSM_16 | ISLFSM_15 | IS_FSM 14 | IS_FSM_13 | IS_FSM_12 | IS FSM_11 IS_FSM_10 IS_FSM_9
PAGE_RW ww | 17h | EMB_FUNC_LIR : - 0 0 0 0 0
FSM_ENABLE_A dw | deh FSM8_EN FSM7_EN | FSM6_EN | FSM5.EN | FSMAEN | FSM3_EN FSM2_EN FSM1_EN
FSM_ENABLE_B dw | 47h FSM16_EN | FSMI5_EN | FSMI4_EN | FSMI3EN | FSMIZEN | FSMI1_EN FSM10_EN FSM9_EN
FSM_LONG_COUNTER L r | ash FSM_LC7 FSM_LC6 FSM_LC5 FSM_LC4 FSM LC3 | FSM LC2 FSM_LC1 FSM_LCO
FSM_LONG_COUNTER_H r | agh FSM_LC15 | FSMLC14 | FSMLC13 | FSM_LC12 = FSMLCH | FSM_LCI0 FSM_LCO FSM_LC8
FSM_LONG_COUNTER_ CLEAR | riw | 4Ah o o o o o o _cT_SE'\AQEIE%W SS::_AEJKS
FSM_OUTS1 r | 4ch P.X N_X Py NLY Pz Nz PV NV
FSM_OUTS2 r | 4ph P.X N_X Py NY Pz N Z PV NV
FSM_OUTS3 r | aEn P.X N_X Py NY Pz N Z PV NV
FSM_OUTS4 r | aFh P.X N_X Py NLY Pz N_Z PV NV
FSM_OUTS5 r | 50n PX N_X Py N_Y Pz Nz PV NV
FSM_OUTS6 v s P_X N_X PY N_Y Pz N_Z PV NV
FSM_OUTS? v 5o P_X N_X PY N_Y Pz N_Z PV N_V
FSM_OUTSS r | s3h P.X N_X Py NY Pz N Z PV NV
FSM_OUTS9 r | s4h P.X N_X Py NY Pz N Z PV NV
FSM_OUTS10 r | ssh P.X N_X Py NY Pz N Z PV NV
FSM_OUTS11 r | s6h P.X N_X Py NY Pz N Z PV NV
FSM_OUTS12 r | sh P.X N_X Py NLY Pz Nz PV NV
FSM_OUTS13 r | sgh PX N_X Py NLY Pz NZ PV NV
FSM_OUTS14 r | 5o P_X N_X PY N_Y Pz Nz PV NV
FSM_OUTS15 r | sAn P_X N_X PY N_Y Pz N_Z PV NV
FSM_OUTS16 r | osen P.X N_X Py NLY Pz N Z PV NV
EMB_FUNC_ODR_ CFG_B | rw | 5Fh 0 16 o FSM_ODR1 | FSM_ODRO 0 16 10
FSM_INIT e | 67h 0 o o o - 0 o FSM_INIT

This bit must be set to ‘0’ for the correct operation of the device.

This bit is effective if INT1_EMB_FUNC bit of MD1_CFG (5Eh) is set to ‘1.
This bit is effective if INT2_EMB_FUNC bit of MD2_CFG (5Fh) is set to '1".
Read-only bit.

This bit must be set to '1' for the correct operation of the device.

IS

AN5273 - Rev 2 page 8/68

AN5273

Configuration block

3

3.1.21 EMB_FUNC_EN_B (05h)
The EMB_FUNC_EN_B (05h) register is used to enable the FSM embedded functionality.

Table 6. EMB_FUNC_EN_B (05h) register

e Es [Es [Em e [Ee [om0 [E3]
0 0 0 - - 0 0

FSM_EN

The FSM_EN bit is used to enable the FSM. When this bit is set to ‘1’, all enabled FSM programs start the
execution.

3.1.2.2 EMB_FUNC_INT1 (0Ah)

The EMB_FUNC_INT1 (0Ah) register is used to route the FSM long counter interrupt on the INT1 pin: set the
INT1_FSM_LC bit to ‘1’ in order to enable routing.

Table 7. EMB_FUNC_INT1 (0Ah) register
M2 T I BT TR T TR BT
INT1_
FSM_LC 0 - - - 0 0 0

The INT1_FSM_LC bit is effective if the INT1_EMB_FUNC bit of MD1_CFG (5Eh) is set to ‘1°.

3.1.2.3 FSM_INT1_A (0Bh)
The FSM_INT1_A (0Bh) register is used for routing the FSM program 1-8 interrupts on the INT1 pin.

Table 8. FSM_INT1_A (0Bh) register

v Es [Es [Em [Es [ome [Ee [ED]

INT1_FSM8 ' INT1_FSM7 ' INT1_FSM6 | INT1_FSM5 INT1_FSM4 @ INT1_FSM3 | INT1_FSM2 @ INT1_FSM1

These bits are effective if the INT1_EMB_FUNC bit of MD1_CFG (5Eh) is set to ‘1"

Each bit on this register enables a signal to be carried on INT1. The pin’s output will supply the OR combination of
the selected signals.

3.1.2.4 FSM_INT1_B (0Ch)
The FSM_INT1_B (0Ch) register is used for routing the FSM program 9-16 interrupts on the INT1 pin.

Table 9. FSM_INT1_B (0Ch) register

ae e e [Tes [TEs [EE [om0 [

INT1_FSM16 | INT1_FSM15 ' INT1_FSM14 | INT1_FSM13 INT1_FSM12 | INT1_FSM11 INT1_FSM10 INT1_FSM9

These bits are effective if the INT1_EMB_FUNC bit of MD1_CFG (5Eh) is set to ‘1"

Each bit on this register enables a signal to be carried on INT1. The pin’s output will supply the OR combination of
the selected signals.

AN5273 - Rev 2 page 9/68

AN5273

Configuration block

3

3.1.2.5 EMB_FUNC_INT2 (OEh)

The EMB_FUNC_INT2 (OEh) register is used for routing the FSM long counter interrupt on the INT2 pin: set the
INT2_FSM_LC bit to “1” in order to enable routing.

Table 10. EMB_FUNC_INT2 (OEh) register

v Es [Es [Em [Es [ome [oEe [ED]
- - - 0 0 0

INT2_ 0
FSM_LC

These bits are effective if the INT2_EMB_FUNC bit of MD2_CFG (5Fh) is set to ‘1°.

3.1.2.6 FSM_INT2_A (0Fh)
The FSM_INT2_A (OFh) register is used for routing the FSM program 1-8 interrupts on the INT2 pin.

Table 11. FSM_INT2_A (OFh) register

Ey es e e TEs = [om0 [ED]

INT2_FSM8 @ INT2_FSM7 @ INT2_FSM6 @ INT2_FSM5 INT2_FSM4 | INT2_FSM3 @ INT2_FSM2 | INT2_FSM1

These bits are effective if the INT2_EMB_FUNC bit of MD2_CFG (5Fh) is set to ‘1°.

Each bit on this register enables a signal to be carried on INT2. The pin’s output will supply the OR combination of
the selected signals.

3.1.2.7 FSM_INT2_B (10h)
The FSM_INT2_B (10h) register is used for routing the FSM program 9-16 interrupts on the INT2 pin.

Table 12. FSM_INT2_B (10h) register

I I T T T R T T

INT2_FSM16 ' INT2_FSM15 INT2_FSM14 | INT2_FSM13 | INT2_FSM12 INT2_FSM11 INT2_FSM10 INT2_FSM9

These bits are effective if the INT2_EMB_FUNC bit of MD2_CFG (5Fh) is set to ‘1°.

Each bit on this register enables a signal to be carried on INT2. The pin’s output will supply the OR combination of
the selected signals.

AN5273 - Rev 2 page 10/68

AN5273

Configuration block

3

3.1.2.8 EMB_FUNC_STATUS (12h)
The EMB_FUNC_STATUS (12h) register contains interrupt status information about the long counter.

Table 13. EMB_FUNC_STATUS (12h) register

v Es [Es [Em [Es [oEe [oEe [ED]
- - - 0 0 0

IS_FSM_LC 0

The IS_FSM_LC bit is automatically set to ‘1’ when the current long counter value, available in the
FSM_LONG_COUNTER_L (48h) and FSM_LONG_COUNTER_H (49h) registers, is equal to the long counter
timeout value configured in the FSM_LC_TIMEOUT_L (7Ah) and FSM_LC_ TIMEOUT_H (7Bh) registers.

3.1.2.9 FSM_STATUS_A (13h)
The FSM_STATUS_A (13h) register contains interrupt status information about programs 1-8.

Table 14. FSM_STATUS_A (13h) register

ay e e e Es = [om0 [ED]

IS_FSM8 IS_FSM7 IS_FSM6 IS_FSM5 IS_FSM4 IS_FSM3 IS_FSM2 IS_FSMH1

The IS_FSMx bit is set to “1” when the OUTC / CONT / CONTREL command is performed in FSM programy.
Refer to the dedicated chapter / paragraph for additional details about these commands.

3.1.2.10 FSM_STATUS_B (14h)
The FSM_STATUS_B (14h) register contains interrupt status information about programs 9-16.

Table 15. FSM_STATUS_B (14h) register

ay s e [Em [oEs [ome [ome [om0

IS_FSM16 IS_FSM15 IS_FSM14 IS_FSM13 IS_FSM12 IS_FSM11 IS_FSM10 IS_FSM9

The IS_FSMx bit is set to ‘1’ when the OUTC / CONT / CONTREL command is performed in FSM programy.
Refer to the dedicated chapter / paragraph for additional details about these commands.

3.1.2.11 PAGE_RW (17h)
The PAGE_RW (17h) register is used to change the FSM interrupt from pulsed (default) to latched.

Table 16. PAGE_RW (17h) register

I T I T R T T
- 0 0 0 0 0

EMB_
FUNC_LIR

AN5273 - Rev 2 page 11/68

AN5273

Configuration block

3

3.1.2.12 FSM_ENABLE_A (46h)
The FSM_ENABLE_A (46h) register is used for enabling programs 1-8 of the FSM.

Table 17. FSM_ENABLE_A (46h) register

v Es [Es [Em [Es [ome [oEe [ED

FSM8_ EN = FSM7 EN = FSM6_ EN = FSM5 EN = FSM4 EN = FSM3_EN = FSM2 EN | FSM1_EN

3.1.2.13 FSM_ENABLE_B (47h)
The FSM_ENABLE_B (47h) register is used for enabling programs 9-16 of the FSM.

Table 18. FSM_ENABLE_B (47h) register

ey s e [Em [oEs ome [om0

FSM16_EN FSM15_EN FSM14_EN FSM13_EN FSM12_EN FSM11_EN FSM10_EN FSM9_EN

3.1.2.14 FSM_LONG_COUNTER_L (48h) and FSM_LONG_COUNTER_H (49h)

The FSM_LONG_COUNTER_L (48h) and FSM_LONG_COUNTER_H (49h) registers are used to read / write the
long counter value. Refer to Section 3.1 Configuration block for information about how to access these registers.

Table 19. FSM_LONG_COUNTER_L (48h) register

v Es [Es [Em [Es [oEe [oEe [ED]

FSM_LC7 FSM_LC6 FSM_LC5 FSM_LC4 FSM_LC3 FSM_LC2 FSM_LC1 FSM_LCO

Table 20. FSM_LONG_COUNTER_H (49h) register

Ee e e e [Es [EE [om0 [

FSM_LC15 = FSM_LC14 = FSM_LC13 @ FSM_LC12 = FSM_LC11 = FSM_LC10 = FSM_LC9 FSM_LC8

3.1.2.15 FSM_LONG_COUNTER_CLEAR (4Ah)
The FSM_LONG_COUNTER_CLEAR (4Ah) register is used to reset the FSM long counter value.

Table 21. FSM_LONG_COUNTER_CLEAR (4Ah) register

mmmmmm

FSM_LC_ FSM_LC_
CLEARED! CLEAR

1. Read-only bit.
Set the FSM_LC_CLEAR bit to 1’ to reset the value of the FSM_LONG_COUNTER_L (48h) and

FSM_LONG_COUNTER_H (49h) registers the next time an INCR command is performed. When the long counter
reset is done, the FSM_LC_CLEARED bit is automatically set to ‘“1’. Refer to Section 5.1 Long Counter.

AN5273 - Rev 2 page 12/68

AN5273

Configuration block

3

3.1.2.16 FSM_OUTS[1:16] (4Ch - 5Bh)
FSM[1:16] output register.

Table 22. FSM_OUTS[1:16] (4Ch - 5Bh) register

v Es [Es [Em [Es [ome [oEe [ED
P_X N_X P_Y N_Y P_Z N_Z P_V N_V

These are read-only registers, one for each state machine, that contain the current active temporary mask value
updated when the OUTC / CONT / CONTREL command is performed.

3.1.2.17 EMB_FUNC_ODR_CFG_B (5Fh)
The EMB_FUNC_ODR_CFG_B (5Fh) register is used to configure the ODR of the FSM (FSM_ODR[1:0] bits).

Table 23. EMB_FUNC_ODR_CFG_B (5Fh) register

mmmmmmm

FSM_ODR1 = FSM_ODRO

All the programs are executed at this configured rate. See Section 6.6 Decimator in Variable Data section for
information about how to run programs at different data rates.

Possible ODR configurations are listed in the following table.

Table 24. FSM output data rate

00 12.5
01 26
10 52
1 104

3.1.2.18 FSM_INIT (67h)
The FSM_INIT (67h) register is used to reset the FSM programs to their default configuration.

Table 25. FSM_INIT (67h) register

mmmmmmm

FSM_INIT

The FSM_INIT bit is used to trigger a new “Start Routine” request. When this bit is set to ‘1’, the device executes
the start routine, described in Section 9 Start routine. When the start routine is completed, the FSM_INIT bit is
automatically set to ‘0.

In addition, this bit automatically goes to ‘1’ when the FSM_EN bit of EMB_FUNC_EN_B (05h) register is set to ‘0’
(and is reset to ‘0’ when the start routine is completed).

313 FSM embedded advanced features registers

The following table provides a list of the registers for the embedded advanced features pages 0 and 1 related to
the FSM. These registers are accessible by configuring PAGE_SEL[3:0] bits in PAGE_SEL (02h).

AN5273 - Rev 2 page 13/68

Table 26. FSM embedded advanced features registers

I Y S S T AT

>
Z
o
N
N
w
]

A
o
<
N

MAG_SENSITIVITY_L 0 MAG_SENS_L7 MAG_SENS_L6 MAG_SENS_L5 MAG_SENS_L4 MAG_SENS_L3 MAG_SENS_L2 MAG_SENS_L1 MAG_SENS_LO
MAG_SENSITIVITY_H 0 BBh MAG_SENS_H7 MAG_SENS_H6 MAG_SENS_H5 MAG_SENS_H4 MAG_SENS_H3 MAG_SENS_H2 MAG_SENS_H1 MAG_SENS_HO
MAG_OFFX_L 0 Coh MAG_OFFX_L7 MAG_OFFX_L6 MAG_OFFX_L5 MAG_OFFX_L4 MAG_OFFX_L3 MAG_OFFX_L2 MAG_OFFX_L1 MAG_OFFX_LO
MAG_OFFX_H 0 Cth MAG_OFFX_H7 MAG_OFFX_H6 MAG_OFFX_H5 MAG_OFFX_H4 MAG_OFFX_H3 MAG_OFFX_H2 MAG_OFFX_H1 MAG_OFFX_H0
MAG_OFFY_L 0 C2h MAG_OFFY_L7 MAG_OFFY_L6 MAG_OFFY_L5 MAG_OFFY_L4 MAG_OFFY_L3 MAG_OFFY_L2 MAG_OFFY_L1 MAG_OFFY_LO
MAG_OFFY_H 0 C3h MAG_OFFY_H7 MAG_OFFY_H6 MAG_OFFY_H5 MAG_OFFY_H4 MAG_OFFY_H3 MAG_OFFY_H2 MAG_OFFY_H1 MAG_OFFY_H0
MAG_OFFZ_L 0 C4h MAG_OFFZ_L7 MAG_OFFZ_L6 MAG_OFFZ_L5 MAG_OFFZ_L4 MAG_OFFZ_L3 MAG_OFFZ_L2 MAG_OFFZ_L1 MAG_OFFZ_LO
MAG_OFFZ_H 0 C5h MAG_OFFZ_H7 MAG_OFFZ_H6 MAG_OFFZ_H5 MAG_OFFZ_H4 MAG_OFFZ_H3 MAG_OFFZ_H2 MAG_OFFZ_H1 MAG_OFFZ_H0
MAG_SI_XX_L 0 C6h MAG_SI_XX_L7 MAG_SI_XX_L6 MAG_SI_XX_L5 MAG_SI_XX_L4 MAG_SI_XX_L3 MAG_SI_XX_L2 MAG_SI_XX_L1 MAG_SI_XX_L0
MAG_SI_XX_H 0 C7h MAG_SI_XX_H7 MAG_SI_XX_H6 MAG_SI_XX_H5 MAG_SI_XX_H4 MAG_SI_XX_H3 MAG_SI_XX_H2 MAG_SI_XX_H1 MAG_SI_XX_H0
MAG_SI_XY_L 0 C8h MAG_SI_XY_L7 MAG_SI_XY_L6 MAG_SI_XY_L5 MAG_SI_XY_L4 MAG_SI_XY_L3 MAG_SI_XY_L2 MAG_SI_XY_L1 MAG_SI_XY_LO
MAG_SI_XY_H 0 Coh MAG_SI_XY_H7 MAG_SI_XY_Hé MAG_SI_XY_H5 MAG_SI_XY_H4 MAG_SI_XY_H3 MAG_SI_XY_H2 MAG_SI_XY_H1 MAG_SI_XY_HO
MAG_SI_XZ_L 0 CAh MAG_SI_XZ_L7 MAG_SI_XZ_L6 MAG_SI_XZ_L5 MAG_SI_XZ_L4 MAG_SI_XZ_L3 MAG_SI_XZ_L2 MAG_SI_XZ_L1 MAG_SI_XZ_L0
MAG_SI_XZ_H 0 CBh MAG_SI_XZ_H7 MAG_SI_XZ_H6 MAG_SI_XZ_H5 MAG_SI_XZ_H4 MAG_SI_XZ_H3 MAG_SI_XZ_H2 MAG_SI_XZ_H1 MAG_SI_XZ_H0
MAG_SI_YY_L 0 CCh MAG_SI_YY_L7 MAG_SI_YY_L6 MAG_SI_YY_L5 MAG_SI_YY_L4 MAG_SI_YY_L3 MAG_SI_YY_L2 MAG_SI_YY_L1 MAG_SI_YY_LO
MAG_SI_YY_H 0 CDh MAG_SI_YY_H7 MAG_SI_YY_H6 MAG_SI_YY_H5 MAG_SI_YY_H4 MAG_SI_YY_H3 MAG_SI_YY_H2 MAG_SI_YY_H1 MAG_SI_YY_HO
MAG_SI_YZ_L 0 CEh MAG_SI_YZ_L7 MAG_SI_YZ_L6 MAG_SI_YZ_L5 MAG_SI_YZ_L4 MAG_SI_YZ_L3 MAG_SI_YZ_L2 MAG_SI_YZ_L1 MAG_SI_YZ_LO
MAG_SI_YZ_H 0 CFh MAG_SI_YZ_H7 MAG_SI_YZ_H6 MAG_SI_YZ_H5 MAG_SI_YZ_H4 MAG_SI_YZ_H3 MAG_SI_YZ_H2 MAG_SI_YZ_H1 MAG_SI_YZ_H0
MAG_SI_ZZ_L 0 DOh MAG_SI_ZZ_L7 MAG_SI_ZZ_L6 MAG_SI_ZZ_L5 MAG_SI_ZZ_L4 MAG_SI_ZZ_L3 MAG_SI_ZZ_L2 MAG_SI_ZZ_L1 MAG_SI_ZZ_L0
MAG_SI_ZZ_H 0 D1h MAG_SI_ZZ_H7 MAG_SI_ZZ_H6 MAG_S|_ZZ_H5 MAG_SI_ZZ_H4 MAG_SI_ZZ_H3 MAG_S|_ZZ_H2 MAG_SI_ZZ_H1 MAG_SI_ZZ_HO
FSM_LG_ TIMEOUT L] AR FSM_LC_7TIMEOUT FSM_LC_6TIMEOUT FSM_LC_5TIMEOUT FSM_LC_4TIMEOUT FSM_LC_STIMEOUT FSM_LC_ZTIMEOUT FSM_LC_1TIMEO uT FSM_LC_OTIMEOUT
FSM_LC_TIMEOUT H 1 78n | FSM_LC_TIMEOUT | FSM_LC_TIMEOUT A FSM_LC_TIMEOUT FSM_LC_TIMEOUT FSM_LC_TIMEOUT FSM_LC_TIMEOUT FSM_LC_TIMEOUT FSM_LC_TIMEOUT
15 14 13 12 11 10 9 8
FSM_PROGRAMS 1 7Ch FSM_N_PROG7 FSM_N_PROG6 FSM_N_PROG5 FSM_N_PROG4 FSM_N_PROG3 FSM_N_PROG2 FSM_N_PROGH1 FSM_N_PROGO
FSM_START_ADD_L 1 7Eh FSM_START7 FSM_START6 FSM_START5 FSM_START4 FSM_START3 FSM_START2 FSM_START1 FSM_STARTO
FSM_START_ADD_H 1 7Fh FSM_START15 FSM_START14 FSM_START13 FSM_START12 FSM_START11 FSM_START10 FSM_START9 FSM_START8

89/y| abed

€LZGNV

AN5273

3

3.1.3.1 MAG_SENSITIVITY_L (BAh) and MAG_SENSITIVITY_H (BBh)
External magnetometer sensitivity register (r/w).

Table 27. MAG_SENSITIVITY_L (BAh) register

Ev Es [Es [Em [Es [ome [Ee [ED

MAG_SENS_ MAG_SENS_ MAG_SENS_ MAG_SENS_ MAG_SENS_ MAG_SENS_ MAG_SENS_ MAG_SENS_
L7 L6 L5 L4 L3 L2 L1 Lo

Table 28. MAG_SENSITIVITY_H (BBh) register

Ev e e [Tem e [EE [m [E]

MAG_SENS_ MAG_SENS_ MAG_SENS_ MAG_SENS_ MAG_SENS_ MAG_SENS_ MAG_SENS_ MAG_SENS_
H7 H6 H5 H4 H3 H2 H1 HO

This register corresponds to the LSB-to-gauss conversion value of the external magnetometer sensor. The
register value is expressed as half-precision floating-point format: SEEEEEFFFFFFFFFF (S: 1 sign bit; E: 5
exponent bits; F: 10 fraction bits). Default value of MAG_SENS[15:0] is 0x1624, corresponding to 0.0015
gauss/LSB (LIS2MDL magnetometer sensitivity).

3.1.3.2 MAG_OFFX_L (COh) and MAG_OFFX_H (C1h)
Offset for X-axis hard-iron compensation register (r/w).

Table 29. MAG_OFFX_L (COh) register

I T T T R T T

MAG_OFFX_ MAG_OFFX_ MAG_OFFX_ MAG_OFFX_ MAG_OFFX_ MAG_OFFX_ MAG_OFFX_ MAG_OFFX_
L7 L6 L5 L4 L3 L2 L1 Lo

Table 30. MAG_OFFX_H (C1h) register

e [Es [Es [em [Es [oEm2 [om0 [B

MAG_OFFX_ MAG_OFFX_ MAG_OFFX_ MAG_OFFX_ MAG_OFFX_ MAG_OFFX_ MAG_OFFX_ MAG_OFFX_
H7 H6 H5 H4 H3 H2 H1 HoO

The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFFFF (S: 1 sign bit; E: 5 exponent
bits; F: 10 fraction bits).

3.1.3.3 MAG_OFFY_L (C2h) and MAG_OFFY_H (C3h)
Offset for Y-axis hard-iron compensation register (r/w).

Table 31. MAG_OFFY_L (C2h) register

ey s e [Em [oEs ome [om0

MAG_OFFY_ MAG_OFFY_ MAG_OFFY_ MAG_OFFY_ MAG_OFFY_ MAG_OFFY_ MAG_OFFY_ MAG_OFFY_
L7 L6 L5 L4 L3 L2 L1 Lo

AN5273 - Rev 2 page 15/68

AN5273

3

Table 32. MAG_OFFY_H (C3h) register

ey s e [Em [oEs [ome [[om0

MAG_OFFY_ MAG_OFFY_ MAG_OFFY_ MAG_OFFY_ MAG_OFFY_ MAG_OFFY_ MAG_OFFY_ MAG_OFFY_
H7 H6 H5 H4 H3 H2 H1 HO

The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFFFF (S: 1 sign bit; E: 5 exponent
bits; F: 10 fraction bits).

3.1.34 MAG_OFFZ_L (C4h) and MAG_OFFZ_H (C5h)
Offset for Z-axis hard-iron compensation register (r/w).

Table 33. MAG_OFFZ_L (C4h) register

v Es [Es [Em [Es B2 [Ee [ED]

MAG_OFFZ_ MAG_OFFZ_ MAG_OFFZ_ MAG_OFFZ_ MAG_OFFZ_ MAG_OFFZ_ MAG_OFFZ_ MAG_OFFZ_
L7 L6 L5 L4 L3 L2 L1 Lo

Table 34. MAG_OFFZ_H (C5h) register

Ey e e [es e = [om0 [ED]

MAG_OFFZ_ MAG_OFFZ_ MAG_OFFZ_ MAG_OFFZ_ MAG_OFFZ_ MAG_OFFZ_ MAG_OFFZ_ MAG_OFFZ_
H7 H6 H5 H4 H3 H2 H1 HoO

The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFFFF (S: 1 sign bit; E: 5 exponent
bits; F: 10 fraction bits).

3.1.3.5 MAG_SI_XX_L (C6h) and MAG_SI_XX_H (C7h)
Soft-iron (3x3 symmetric) matrix row1 col1 correction register (r/w).

Table 35. MAG_SI_XX_L (C6h) register

I I T T N I T T

MAG_SI_XX_ MAG_SI_XX_ MAG_SI_XX_ MAG_SI_XX_ MAG_SI_XX_ MAG_SI XX_ MAG_SI_XX_ MAG_SI_XX_
L7 L6 L5 L4 L3 L2 L1 Lo

Table 36. MAG_SI_XX_H (C7h) register

e Es [Es [Em [Es [B2 [om0 [B

MAG_SI_XX_ MAG_SI_XX_ MAG_SI_XX_ MAG_SI_XX_ MAG_SI_XX_ MAG_SI_XX_ MAG_SI_XX_ MAG_SI_XX_
H7 H6 H5 H4 H3 H2 H1 HO

The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFFFF (S: 1 sign bit; E: 5 exponent
bits; F: 10 fraction bits).

AN5273 - Rev 2 page 16/68

AN5273

3

3.1.3.6 MAG_SI_XY_L (C8h) and MAG_SI_XY_H (C9h)
Soft-iron (3x3 symmetric) matrix row1 col2 (and row2 col1) correction register (r/w).

Table 37. MAG_SI_XY_L (C8h) register

v Es [Es [Em [Es [ome [oEe [ED

MAG_SI_XY_ MAG_SI_XY_ MAG_SI_XY_ MAG_SI_XY_ MAG_SI_XY_ MAG_SI XY_ MAG_SI_XY_ MAG_SI XY_
L7 L6 L5 L4 L3 L2 L1 Lo

Table 38. MAG_SI_XY_H (C9h) register

Ey e e e e = [m [ED]

MAG_SI_XY_ MAG_SI_XY_ MAG_SI_XY_ MAG_SI_XY_ MAG_SI_XY_ MAG_SI_XY_ MAG_SI_XY_ MAG_SI_XY_
H7 H6 H5 H4 H3 H2 H1 HO

The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFFFF (S: 1 sign bit; E: 5 exponent
bits; F: 10 fraction bits).

3.1.3.7 MAG_SI_XZ_L (CAh) and MAG_SI_XZ_H (CBh)
Soft-iron (3x3 symmetric) matrix row1 col3 (and row3 col1) correction register (r/w).

Table 39. MAG_SI_XZ_L (CAh) register

I T T T R T T

MAG_SI_XZ_ MAG_SI XZ_ MAG_SI_XZ_ MAG_SI XZ_ MAG_SI_XZ_ MAG_SI XZ_ MAG_SI_XZ_ MAG_SI XZ_
L7 L6 L5 L4 L3 L2 L1 Lo

Table 40. MAG_SI_XZ_H (CBh) register

Ee Es [Es [em [Es [oEme [om0 [ED

MAG_SI_XZ_ MAG_SI XZ_ MAG_SI_XZ_ MAG_SI XZ_ MAG_SI_XZ_ MAG_SI XZ_ MAG_SI_XZ_ MAG_SI XZ_
H7 H6 H5 H4 H3 H2 H1 HO

The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFFFF (S: 1 sign bit; E: 5 exponent
bits; F: 10 fraction bits).

3.1.3.8 MAG_SI_YY_L (CCh) and MAG_SI_YY_H (CDh)
Soft-iron (3x3 symmetric) matrix row2 col2 correction register (r/w).

Table 41. MAG_SI_YY_L (CCh) register

ey [ms e [Em [oEs ome [ome [

MAG_SI_YY_ MAG_SI_YY_ MAG_SLYY_ MAG_SILYY_ MAG_SLYY_ MAG SLYY_ MAG SLYY_ MAG S| YY_
L7 L6 L5 L4 L3 L2 L1 Lo

AN5273 - Rev 2 page 17/68

AN5273

3

Table 42. MAG_SI_YY_H (CDh) register

ay s e [Em [oEs [ome [[Em]

MAG_SI_YY_ MAG_SI_YY_ MAG_SIYY_ MAG_SILYY_ MAG_SLYY_ MAG SILYY_ MAG_SIYY_ MAG S| YY_
H7 H6 H5 H4 H3 H2 H1 HO

The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFFFF (S: 1 sign bit; E: 5 exponent
bits; F: 10 fraction bits).

3.1.3.9 MAG_SI_YZ_L (CEh) and MAG_SI_YZ_H (CFh)
Soft-iron (3x3 symmetric) matrix row2 col3 (and row3 col2) correction register (r/w).

Table 43. MAG_SI_YZ_L (CEh) register

v Es [Es [Em [Es [ome [Ee [ED]

MAG_SI_YZ_ MAG_SI YZ_ MAG_SI.YZ_ MAG_SI YZ_ MAG_SI.YZ MAG_SI YZ_ MAG_SI.YZ MAG_SI YZ_
L7 L6 L5 L4 L3 L2 L1 Lo

Table 44. MAG_SI_YZ_H (CFh) register

Ey e e [em e [EE [m [ED]

MAG_SI_YZ_ | MAG_SI_YZ_ MAG_S| YZ_ MAG_SI_YZ_ MAG_S| YZ_ MAG_SI_YZ_ MAG_SI|_YZ_ MAG_SI YZ_
H7 H6 H5 H4 H3 H2 H1 HO

The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFFFF (S: 1 sign bit; E: 5 exponent
bits; F: 10 fraction bits).

3.1.3.10 MAG_SI_ZZ_L (DOh) and MAG_SI_ZZ_H (D1h)
Soft-iron (3x3 symmetric) matrix row3 col3 correction register (r/w).

Table 45. MAG_SI_ZZ_L (DOh) register

I T T T R T T

MAG_SI ZZ_ MAG_SI ZZ MAG_SI ZZ_ MAG_ S| ZZ MAG_SI.ZZ MAG_ S| ZZ MAG_SI.ZZ MAG_ S| 7Z_
L7 L6 L5 L4 L3 L2 L1 Lo

Table 46. MAG_SI_ZZ_H (D1h) register

e Es [Es [Em [Es [Em2 [om0 [B

MAG_S|_ZZ_ MAG_SI_ZZ MAG_S| ZZ_ MAG_SI_ZZ MAG_S| ZZ_ MAG_S|_ZZ_ MAG_SI|_.ZZ_ | MAG_S| ZZ_
H7 H6 H5 H4 H3 H2 H1 HO

The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFFFF (S: 1 sign bit; E: 5 exponent
bits; F: 10 fraction bits).

AN5273 - Rev 2 page 18/68

AN5273

3

3.1.3.11 FSM_LC_TIMEOUT_L (7Ah) and FSM_LC_TIMEOUT_H (7Bh)

The FSM_LC_TIMEOUT_L (7Ah) and FSM_LC_TIMEOUT_H (7Bh) registers are used to set the long counter
timeout register value.

Table 47. FSM_LC_TIMEOUT _L (7Ah) register

v Es [Es [Em [Es [ome [Ee [ED]

FSM_LC_ = FSM_LC_ FSM_LC_ FSM_LC_ ~ FSM_LC_ = FSM_LC_ FSM_LC_ FSM_LC_
TIMEOUT7 = TIMEOUT6 = TIMEOUT5 = TIMEOUT4 = TIMEOUT3 = TIMEOUT2 = TIMEOUT1 = TIMEOUTO

Table 48. FSM_LC_TIMEOUT_H (7Bh) register

ey [ms e [Em [oEs ome [ome [mm

FSM_LC_ = FSM_LC_ FSM_LC_ FSM_LC_ ~ FSM_LC_ = FSM_LC_ FSM_LC_ FSM_LC_
TIMEOUT16 = TIMEOUT15 TIMEOUT14 TIMEOUT13 TIMEOUT12 TIMEOUT11 TIMEOUT10 TIMEOUT9

3.1.3.12 FSM_PROGRAMS (7Ch)
The FSM_PROGRAMS (7Ch) register is used to set the number of configured state machines.

Table 49. FSM_N_PROG (7Ch) register

e Es [Es [Em [Es [Em2 [om0 [E]

FSM_N_ FSM_N_ FSM_N_ FSM_N_ FSM_N_ FSM_N_ FSM_N_ FSM_N_
PROG7 PROG6 PROG5 PROG4 PROG3 PROG2 PROGH PROGO

This register must be configured coherently with configured state machines for the correct operation of the device.
The maximum allowed value is 16 (0x10).

3.1.3.13 FSM_START_ADD_L (7Eh) and FSM_START_ADD_H (7Fh)

The FSM_START_ADD L (7Eh) and FSM_START_ADD_H (7Fh) registers are used to set the FSM program start
address.

Table 50. FSM_START_ADD_L (7Eh) register

I T T T R T T

FSM_START | FSM_START | FSM_START | FSM_START FSM_START FSM_START @ FSM_START @ FSM_START
7 6 5 4 3 2 1 0

The value of this register must be set equal to ‘00h’ for the correct operation of the device.

Table 51. FSM_START_ADD_H (7Fh) register

ey [ms e [Em [oEs [ome [ome [mm

FSM_START | FSM_START | FSM_START | FSM_START @ FSM_START FSM_START @ FSM_START @ FSM_START
16 15 14 13 12 1 10 9

The value of this register must be set equal to ‘04h’ for the correct operation of the device.

AN5273 - Rev 2 page 19/68

m ANS5273

Program block

3.2 Program block

Output data coming from the Signal Conditioning block are sent to the FSM block, composed of 16 Program
blocks. Each Program block, as shown in the following figure, consists of:

. an Input Selector block, that selects the desired input data signal that will be processed by the program;
. a Code block, composed of the data and the instructions that will be executed.

Figure 5. Program block

PROGRAM,
ACCY [g] —+—
GYRY d — PROGRAM, Input
[rad/sec] INPUT CODE PROGRAM, Output
MLC FILTERS —+—| SELECTOR SINMUX
EXT. SENSOR (MAG)" [G] —+—
X=1..16

3.21 Input Selector block
The Input Selector block allows the selection of the input data signal between the following physical sensor data
signals or internally calculated data signals:
. LSM6DSOX accelerometer data, with pre-computed norm (V);
. LSM6DSOX gyroscope data, with pre-computed norm (V);
. external sensor (e.g. magnetometer) data, with pre-computed norm;
. internally filtered data, by properly configuring the Machine Learning Core;
. internally calculated angles, with pre-computed norm (V).
The signal bandwidth of the accelerometer and gyroscope depends on the device configuration. For additional
information, please refer to AN5192 available at www.st.com. The Program block executes the configured

program (Code block) by processing the selected input signal and generating the corresponding Program Output
signals, according to the purpose of the program.

Note: The SINMUX command can be used by the user inside the program instructions section to dynamically
switch the desired input signal for the Program block. Refer to SINMUX (23h) for additional and detailed
information about the SINMUX command.

3.2.2 Code block
The FSM Programy Code block contains the state machine program. The structure of a single program is shown
in the following figure; it is composed of:

. a Data section, composed of a fixed part (same size for all the FSMs), and a variable part (specific size for
each FSM);

. an Instruction section, composed of conditions and commands.

Each program can generate an Interrupty signal and modify the corresponding FSM_OUTSy register value,
according to processed sample sets coming from the Inputy signal.

AN5273 - Rev 2 page 20/68

http://www.st.com

m AN5273

Program block

Figure 6. FSM Programy Code structure

CODE

FIXED DATA SECTION
' Interrupt,
PROGRAM, Input
> VARIABLE DATA SECTION
FSM_OUTS,
e INSTRUCTIONS SECTION i
SINMUX | !
X=1.16

All FSM programs are stored consecutively in a set of reserved embedded advanced features registers, as shown
in the following figure. The maximum allowed size for each program is 256 bytes.

Note: FSMs have to be reconfigured each time the device is powered on.

Figure 7. FSM Program, memory area

FSM Program, Code
FIXED DATA SECTION Int t
PROGRAM, Input nrerrupty
> VARIABLE DATA SECTION
DR —— - INSTRUCTIONS SECTION FSM_OUTS,
SINMUX
FSM Program, Code
FIXED DATA SECTION Interrupt
2
PROGRAMZ InpUt: VARIABLE DATA SECTION
D ——— INSTRUCTIONS SECTION FSM—OUTSZ
SINMUX
| |
| |
| |
1 1
FSM Program,, Code
FIXED DATA SECTION Int t
PROGRAM Input nterribtie
> VARIABLE DATA SECTION
D T R - INSTRUCTIONS SECTION FSM_OUTS,6
SINMUX

AN5273 - Rev 2 page 21/68

3

AN5273
FSM Interrupt

FSM Interrupt

ANS5273 - Rev 2

The FSM interrupt signal is generated when the end state is reached or when some specific command is
performed (OUTC / CONT / CONTREL commands). When an interrupt is generated, the corresponding
temporary mask value is transmitted to its corresponding FSM_OUTS[1:6] embedded function register.

The FSM long counter interrupt signal is generated when the long counter value, stored in the

FSM_LONG_COUNTER_L/H embedded function register, reaches the configured long counter timeout value in

FSM_LC_TIMEOUT_L/H embedded advanced features register (page 1).

The FSM interrupt and the FSM long counter interrupt signals can be checked by reading the dedicated register:

. EMB_FUNC_STATUS_MAINPAGE (35h) register and EMB_FUNC_STATUS (12h) embedded function
register for the long counter interrupt status;

. FSM_STATUS_A_MAINPAGE (36h) and FSM_STATUS_B_MAINPAGE (37h) registers or FSM_STATUS_A
(13h) and FSM_STATUS_B (14h) embedded function register for FSM interrupt status.

The FSM interrupt signal can be driven to the INT1/INTZ2 interrupt pin by setting the dedicated bit:
. INT1_FSM_LC/INT2_FSM_LC bit of the EMB_FUNC_INT1/EMB_FUNC_INT2 embedded function register
to 1;

. INT1_FSM[1:16])/INT2_FSM[1:16] bit of the FSM_INT1_A/FSM_INT1_B/FSM_INT2_A/FSM_INT2_B
embedded function register to 1;

Note: In both of the above cases it is mandatory to also enable the routing of the embedded functions event to the
INT1/INT2 interrupt pin by setting the INT1_EMB_FUNC/INT2_EMB_FUNC bit of the MD1_CFG/MD2_CFG
register.

The behavior of the interrupt signal is pulsed by default. The duration of the pulse depends on the faster enabled
sensor:

. If the accelerometer ODR is greater than the gyroscope ODR, the pulse duration is equal to 1/ODRXL;
. If the gyroscope ODR is greater than the accelerometer ODR, the pulse duration is equal to 1/ODRG;

Note: Minimum pulse duration is 1/104 Hz (~9.6 msec).

Latched mode can be enabled by setting the EMB_FUNC_LIR bit of the PAGE_RW (17h) embedded functions

register to 1. In this case, the interrupt signal is reset by reading:

. EMB_FUNC_STATUS_MAINPAGE (35h) register and EMB_FUNC_STATUS (12h) embedded function
registers for long counter interrupt status;

. FSM_STATUS_A_MAINPAGE (36h) and FSM_STATUS_B_MAINPAGE (37h) registers or FSM_STATUS_A
(13h) and FSM_STATUS_B (14h) embedded function registers for FSM interrupt status.

page 22/68

m ANS5273

Fixed Data section

5 Fixed Data section

The Fixed Data section stores information about the Variable Data section and the Instructions section: it is
composed of six bytes and it is located at the beginning of each program. The following figure shows the structure
of the Fixed Data section.

Figure 8. Fixed Data section

| | Nave | 7 | 6 | s | 4 | 3 | 2 | 1 | o |

[0] CONFIG A NR_THRESH(1:0) NR_MASK(1:0) NR_LTIMER(1:0) NR_TIMER(1:0)
CONFIG B DES HYST ANGLE PAS DECTREE STOPDONE LC IMP
SIZE PROGRAM SIZE(7:0)

SETTINGS MASKSEL(1:0) SIGNED R_TAM THRS3SEL IN_SEL(2:0)

n RESET POINTER RESET POINTER(7:0)

PROGRAM POINTER PROGRAM POINTER(7:0)

Note: Green colored bits have to be set according to program purposes, while red bits have to be set to ‘0’ when
the program is loaded into the embedded advanced features registers page (they are automatically configured by
the FSM logic).

The first two bytes store the amount of resources used by the program, while other bytes are used by the device
to store the program status.

. With CONFIG_A it is possible to declare:
— up to 3 thresholds (NR_THRESH bits);
— up to 3 masks (NR_MASK bits);
— upto 2long (16 bits) timers (NR_LTIMER bits);
— up to 2 short (8 bits) timers (NR_TIMER bits).

. With CONFIG_B it is possible to declare:
— adecimation factor for incoming ODR (DES bit);
— ahysteresis value (HYST bit);
— usage of gyroscope angles, that have to be computed and stored (ANGLE bit);
— usage of previous axis signs, that have to be computed and stored (PAS bit);
— usage of a decision tree interface (DECTREE bit);
— usage of the long counter, common to all state machines (LC bit).

. The SIZE parameter stores the length in bytes of the whole program (sum of Fixed Data section size,
Variable Data section size and Instruction section size). The SIZE byte must always be an even number. If
the size of the program is odd, an additional STOP state has to be added at the bottom of the Instruction
section.

. The SETTINGS parameter stores the current program status (selected mask, selected threshold, input
signal, etc...).

. The RESET POINTER (RP) and PROGRAM POINTER (PP) store respectively the reset pointer relative
address (jump address when a RESET condition is true) and the program pointer relative address (address
of the instruction under execution during the current sample time). Address 00h is referred to CONFIG_A
byte.

Note: When PP is equal to ‘0’, the device automatically runs the Start routine (refer to Section 9 Start routine for
additional information) in order to properly initialize the internal variables and parameters of the state machine.
This is mandatory for a correct operation of the device.

AN5273 - Rev 2 page 23/68

m AN5273

Long Counter

5.1 Long Counter

The long counter is a temporary counter resource available to the user; it's possible to increment its value, stored
in the FSM_LONG_COUNTER_L (47h) and FSM_LONG_COUNTER_H (48h) registers, by using the INCR
command.

This resource is common to all programs and does not need additional allocated resources in the Variable Data
section. In order to use the long counter resource, the LC bit of CONFIG_B byte must be set to ‘1’.

When the long counter value (FSM_LONG_COUNTER_L (47h) and FSM_LONG_COUNTER_H (48h) registers)
is equal to the configured long counter timeout value (FSM_LC_TIMEOUT _L (7Ah) and FSM_LC_TIMEOUT_H
(7Bh) registers), the IS_FSM_LC status bit of the EMB_FUNC_STATUS (12h) register is set to ‘1’.

It is possible to route this signal to the:
. INT1 pin if both the:

- INT1_FSM_LC bit of the EMB_FUNC_INT1 (0Ah) register is set to 1;

— INT1_EMB_FUNC bit of the MD1_CFG (5Eh) is set to ‘1".
. INT2 pin if both the:

— INT2_FSM_LC bit of the EMB_FUNC_INT2 (OEh) register is set to 1;

— INT2_EMB_FUNC bit of the MD2_CFG (5Fh) is set to ‘1".
In order to clear the IS_FSM_LC status bit, it is necessary to set the FSM_LC_CLEAR bit of the
FSM_LONG_COUNTER_CLEAR (4Ah) register to ‘1". The next time an INCR command is performed, the reset
procedure starts. When the reset procedure is completed, the FSM_LC_CLEARED bit of the

FSM_LONG_COUNTER_CLEAR (4Ah) register is automatically set to ‘1. Finally, the FSM_LC_CLEAR bit of the
FSM_LONG_COUNTER_CLEAR (4Ah) register bit has to be manually reset to ‘0’.

AN5273 - Rev 2 page 24/68

m ANS5273

Variable Data section

6 Variable Data section

The Variable Data section is located below the corresponding Fixed Data section of a program, and its size
depends on the amount of resources defined in the Fixed Data section.

Each resource enumerated in the Fixed Data section is then allocated in the Variable Data section, with proper
size and at the proper position. The following figure shows the structure of the Variable Data section.

Figure 9. Variable Data section

[wawe | 7 | 6 | 5 | 4 | 3 | 2 | 1 [0
o

THRESH1 THRESH1(15:0)

E THRESH2 THRESH2(15:0)
THRESH3 THRESH3(15:0)
HYST HYSTERESIS(15:0)
[14] MASKA MASKA(7:0)
TMASKA TMASKA(7:0)

[16 | MASKB MASKB(7:0)
TMASKB TMASKB(7:0)

[18 | MASKC MASKC(7:0)
TMASKC TMASKC(7:0)
DELTAT DELTAT(15:0)
E DX DX(15:0)
E DY DY(15:0)

DZ DZ(15:0)

E DV DV(15:0)

TC TC(15:0) or TC(7:0)
E TIMER1 TIMER1(15:0)
E TIMER2 TIMER2(15:0)

[36 | TIMER3 TIMER3(7:0)
TIMER4 TIMER4(7:0)
33] DEST DEST(7:0)
B DESC DESC(7:0)
40| PAS SIGN_X SIGN_Y SIGN.Z SIGN_V
DECTREE - DTSEL(2:0) DTRES(3:0)

As shown in the table above, the maximum size of the Variable Data section is 36 bytes. If the program requires
fewer resources, the size allocated for the Variable Data section is lower.

Note: The usage of the resources declared in the Fixed Data section starts always from the lowest resource
number. For example if the user defines NR_THRESH = ‘10’ in the Fixed Data section (two thresholds defined),
available thresholds that can be used in the program are THRESH1 and THRESH?2, while THRESH3 is not
available and the bytes corresponding to THRESH3 are not allocated (all the resources below THRESH?2 are
shifted up).

AN5273 - Rev 2 page 25/68

ANb5273
Thresholds

3

6.1 Thresholds

Threshold resources are used to check and validate values assumed by the selected input signal (through the
SINMUX command) and axis (through MASKS) in comparison conditions.

Thresholds can be signed or unsigned: it is possible to move from signed to unsigned mode by using the
SSIGNO / SSIGN1 commands. In signed mode, signal and threshold keep their original sign in the comparison. In
unsigned mode, the comparison is performed between the absolute values of both signal and threshold.

By setting the NR_THRESH][1:0] bits of CONFIG_A byte, the corresponding number of thresholds can be
configured in the Variable Data section, as described below:

. NR_THRESHI[1:0] = ‘00’: no thresholds are allocated in the Variable Data section.

. NR_THRESHI[1:0] = ‘01’: only THRESH1[15:0] is allocated in the Variable Data section.

. NR_THRESH][1:0] = “10": THRESH1[15:0] and THRESHZ2[15:0] are allocated in the Variable Data section.

. NR_THRESH][1:0] = “11": THRESH1[15:0], THRESH2[15:0] and THRESH3[15:0] are allocated in the
Variable Data section.

Involved commands:

. STHR1/ STHR2;

. SELTHR1 / SELTHRS;

. SSIGNO / SSIGN1.

Involved conditions:
. GNTH1/GNTH2 / GLTH1 / GRTH1;
. LNTH1 /LNTH2 /LLTH1 / LRTH1.

6.2 Hysteresis

The hysteresis resource affects the current threshold value when a threshold comparison is performed. If the
hysteresis resource is used, the hysteresis value is automatically:

. added to the threshold used in all “GREATER THAN” conditions (GNTH1, GNTH2, GLTH1 and GRTH1);
. subtracted from the threshold used in all “LESS THAN” conditions (LNTH1, LNTH2, LLTH1 and LRTH1).

Examples:

. if “GNTH1” condition is performed, the threshold used is: THRESH1 + Hysteresis;

. if “LNTH2” condition is performed, the threshold used is: THRESH2 — Hysteresis.

By setting the HYST bit of CONFIG_B byte to ‘1, the HYSTERESIS[15:0] resource can be properly configured in
the Variable Data section.

Involved commands:

. N/A.

Involved conditions:
. GNTH1/GNTH2 / GLTH1 / GRTH1;
. LNTH1 /LNTH2 /LLTH1 / LRTH1.

Note: Hysteresis does not affect zero-crossing conditions.

AN5273 - Rev 2 page 26/68

ANS5273

Masks / temporary masks

3

6.3 Masks / temporary masks

Mask resources are used to enable or disable mask action on the input data (X, Y, Z, V) when a condition is
performed. If a mask bit is set to 1, then the corresponding axis and sign is enabled, otherwise it is disabled.
Masks are used in threshold comparison conditions or zero-crossing detection. Masks allow inverting the sign of
the input signal by enabling the corresponding axis bit with a minus sign. Masks are composed of 8 bits (2 bits for
each axis), as shown below:

S +Y Y +Z -z v | v

For each axis, it is possible to configure four different mask settings:

1. Positive axis bit = 0 / Negative axis bit = 0, axis is disabled;

2. Positive axis bit = 0 / Negative axis bit = 1, axis with opposite sign is enabled;

3. Positive axis bit = 1 / Negative axis bit = 0, axis with current sign is enabled;

4. Positive axis bit = 1 / Negative axis bit = 1, axis with current sign and axis with opposite sign are enabled.

When a program is enabled, the value of each mask is copied inside the related temporary mask (TM), that will be
used during execution of conditions. Each time a condition is issued, the result of the condition is stored again in
the temporary mask (it affects also consecutive conditions).

Example:

. “GNTH1” condition;

. THRESH1 = 0.50 g;

. MASKA = 12h (00010010b) — -Y and +V are enabled;

. Current input accelerometer sample =[0.72 -0.45 0.77 1.15].

TM before the condition 0 0 1 0 0 1 0
Accelerometer sample -0.72 | -045 | 045 | 0.77 | -0.77 | 115 | -1.15
TM after the condition 0 0 0 0 0 1 0

It is possible to reset the temporary mask value to the mask value in following conditions:

. anytime there is a reset condition;

. when executing a CONTREL command,;

. when executing a REL command;

. after each true next condition, if an SRTAM1 command has been previously issued.

By setting the NR_MASK([1:0] bits of CONFIG_A byte, the corresponding number of masks can be configured in
the variable data section, as described below:

. NR_ MASK]1:0] = ‘00’: no masks are allocated in the variable data section;

. NR_ MASK]1:0] = ‘01’: only MASKA[7:0)/TMASKA[7:0] are allocated in the variable data section;

. NR_ MASK]1:0] = “10": MASKA[7:0//TMASKA[7:0] and MASKB[7:0/TMASKBJ7:0] are allocated in the
variable data section;

. NR_ MASK[1:0] = “11": MASKA[7:0//TMASKA[7:0], MASKB[7:0//TMASKB[7:0] and MASKCI7:01/
TMASKC][7:0] are allocated in the variable data section.

Involved commands:

. SELMA / SELMB / SELMC;

. SMA / SMB / SMC;

. REL;

. SRTAMO / SRTAM1;
. SWAPMSK;

. SISW.

Involved conditions:

. GNTH1/GNTH2 / GLTH1 / GRTH1;
. LNTH1 /LNTH2 /LLTH1 / LRTH1;

. PZC / NzC.

AN5273 - Rev 2 page 27/68

AN5273
DeltaT, DX, DY, DZ, DV

3

6.4 DeltaT, DX, DY, DZ, DV

Angle resources can be used instead of angular velocity data when a condition is issued. The angle computation
is performed internally: gyroscope data are automatically multiplied by the DELTAT value, and the results are
added to corresponding angle axis bytes (DX, DY, DZ and DV). This occurs when the program uses as input
signal the integrated gyroscope signal (SINMUX command, with ‘7’ as parameter).

There are two reset-angle modalities:

. by default, angular velocity integration is cleared each time a reset or next condition is true. In this case,
computed angles (DX, DY, DZ and DV bytes) will restart from zero when a new sample arrives;

. if the program contains a CANGLE command, a different reset-angle modality is used. In this case,
integrated angles are cleared:

— ifa CANGLE command is performed (when a new sample arrives);

— only if a reset condition is true.
By setting the ANGLE bit of the CONFIG_B byte to ‘1’, 10 bytes (DELTAT, DX, DY, DZ and DV) are allocated in
the variable data sections: DELTAT resource has to be set equal to current FSM_ODR cycle time in seconds (half

floating point (16 bits) format). If a CANGLE command is expected to be used, also the PAS bit of the CONFIG_B
byte has to be set to ‘1’.

Involved commands:
. CANGLE.

Involved conditions:

. GNTH1/GNTH2 / GLTH1 / GRTH1;
. LNTH1 /LNTH2 /LLTH1 / LRTH1;

. PZC / NzC.

6.5 TC and timers

Timer resources are used to manage event durations. It is possible to declare two kinds of timer resources: long
timers (16 bits) and short timers (8 bits). The time base is set by the FSM_ODR([1:0] bits of the
EMB_FUNC_ODR_CFG_B (5Fh) register, including the decimation factor if used. Long timer resources are called
TI1 and TI2, while short timer resources are called TI3 and Tl4. An additional internal Timer Counter (TC) is used
as temporary counter to check if a timer has elapsed. The TC value can be preloaded with two different
modalities, selectable by using the SCTCO0 / SCTC1 commands:

. SCTCO mode (default): when the program pointer moves to a state with a timeout condition, the TC value is
always preloaded to the corresponding timer value. In this modality, the timer duration affects one state only.

. SCTC1 mode: when the program pointer moves to a state with a timeout condition, there are two different
scenarios depending on which timer is used in the new state:

— if the timer used in the new state is different from the timer used in the previous state, the TC value is
preloaded to the corresponding timer value. In this modality, the timer duration affects one state only
(same as SCTCO mode);

— if the timer used in the new state is the same used in the previous state, the TC value is not preloaded.
The TC value continues to be decreased starting from its previous value. In this modality, the timer
duration could affect more states.
The TC value is decreased by 1 each time a new sample occurs: if TC reaches ‘0’, the condition is true.
Example:
. Timer TI3 is set equal to 10. Consider the following states:
— S0-SCTCOor SCTC1
— S1-TI3| GNTH1
— S2-TI3|LNTH2
— S3-TI3| GNTH1
. TI3 = 0Ah (10 samples);

Depending on S0, there are two different state machine behaviors:

. SCTCO case: the TC byte is always preloaded (when the program pointer moves to states S1, S2 and S3)
and each condition is checked for a maximum of 10 samples. This means that all conditions can be verified
in a maximum of 30 samples;

AN5273 - Rev 2 page 28/68

ANS5273

Decimator

3

. SCTC1 case: the TC byte is preloaded only when the program pointer moves to S1 (and is not preloaded
when it moves to S2 and S3), and all conditions have to be verified in a maximum of 10 samples.
SCTC1 modality is typically used when different conditions have to be verified in the same time window.

By setting the NR_LTIMER[1:0] bits of the CONFIG_A byte, the corresponding number of long timers can be
configured in the variable data section, as described below:

. NR_LTIMER[1:0] = ‘00’: no long timers are allocated in the variable data section;

. NR_LTIMER][1:0] = ‘01”: TIMER1[15:0] is allocated in the variable data;

. NR_LTIMER(1:0) = “10": TIMER1[15:0] and TIMER2[15:0] are allocated in the variable data section.
By setting the NR_TIMER[1:0] bits of the CONFIG_A byte, the corresponding number of short timers can be
configured in the variable data section, as described below:

. NR_TIMER][1:0] = ‘00’: no short timers are allocated in the variable data section;

. NR_TIMER][1:0] = ‘01": TIMER3J7:0] is allocated in the variable data;

. NR_TIMER][1:0] = “10’: TIMER3J[7:0] and TIMERA4[7:0] are allocated in the variable data section.

Below the size of the TC resource:

. if NR_LTIMER[1:0] = ‘00’ and NR_TIMER]1:0] = ‘00’, TC resource is not allocated;

. if NR_LTIMER][1:0] = ‘00’ and NR_TIMER([1:0] # ‘00’, TC resource occupies one byte;
. if NR_LTIMER[1:0] # ‘00’ and NR_TIMER[1:0] = ‘00", TC resource occupies two bytes;
. if NR_LTIMER[1:0] # ‘00’ and NR_TIMER][1:0] # ‘00", TC resource occupies two bytes;

Involved commands:
. STIMER3 / STIMER4;
. SCTCO/SCTCH1.

Involved conditions:
. T /TI2/TI3/ Tl4.

6.6 Decimator
The decimator resource is used to reduce the sample rate of the data going to the Finite State Machine.

By setting the DES bit of the CONFIG_B byte to “1’, the DEST and DESC bytes can be properly configured in the
variable data section. The DEST value is the desired decimation factor, while the DESC value is the internal
counter (automatically managed by the device). The decimation factor is related to the FSM_ODR([1:0] bits of the
EMB_FUNC_ODR_CFG_B (5Fh) register, according to following formula:

PROGRAM_ODR = FSM_ODR / DEST
At startup:

DESC = DEST (initial decimation value)
when sample clock occurs:

DESC = DESC - 1

When DESC is equal to 0, the current sample is used as the new input for the state machine, and the DESC
value is set to the initial decimation value again.

Commands involved:
. N/A.

Conditions involved:
. N/A.

Note: The minimum meaningful value for DEST is ‘2’.

AN5273 - Rev 2 page 29/68

m ANS5273

Previous axis sign

6.7 Previous axis sign

The previous axis sign resource is used to store the sign of the previous sample: this information is used in zero-
crossing conditions.

By setting the PAS bit of the CONFIG_B byte to ‘1’, the PAS byte is allocated in the variable data section (the PAS
byte value is automatically managed by the device). This is mandatory if a zero-crossing condition (NZC or PZC)
is expected to be used in the program.

Involved commands:
. SSIGNO / SSIGN1.

Involved conditions:
. PzZC / NzC.

Note: If the SSIGNO command is performed, NZC and PZC are used as a generic ZC condition.

6.8 Decision Tree interface

The Decision Tree interface resource is accessible by using the CHKDT condition, that can be used to check the
result of one of the eight decision trees available inside the Machine Learning Core algorithms. This can be very
useful when a machine learning logic is expected to be combined with an FSM program.

By setting the DECTREE bit of CONFIG_B byte to ‘1’, the DECTREE byte can be properly configured in the
variable data section. The DECTREE byte contains information about the progressive number of the decision
trees to be triggered (DTSEL(2:0) bits, from 0 to 7) and the corresponding expected value (DTRES(3:0) bits, from
0 to 15).

Involved commands:

- N/A

Involved conditions:

- CHKDT

AN5273 - Rev 2 page 30/68

ANS5273

Instructions section

3

7 Instructions section

The Instructions section is defined below the variable data section and is composed of a series of states that

implement the algorithm logic. Each state is characterized by one 8-bit operation code (opcode), and each

opcode can implement a command or a RESET/NEXT condition:

1. Commands are used to perform special tasks for flow control, output and synchronization. Some commands
may have parameters, executed as one single-step command;

2. RESET/NEXT conditions are a combination of two conditions (4 bits for RESET condition and 4 bits for
NEXT condition) that are used to reset or continue the program flow.

The opcodes have a direct effect on registers and internal state machine memories. For some opcodes, additional

side effects can occur (such as update of status information).

A RESET/NEXT condition or a command, eventually followed by parameters, represents an instruction, also
called program state. They are the building blocks of the instructions section of a program.

71 Reset/Next conditions

RESET/NEXT conditions are used to reset or continue the program flow. RESET/NEXT conditions are executed
in one single state when a new sample set is ready.

The RESET condition is defined in the opcode MSB part while the NEXT condition is defined in the opcode LSB
part. As shown in the following figure, the RESET condition is always performed before the NEXT condition, that
is evaluated only when the RESET condition is not satisfied.

When both conditions (NEXT and RESET) are not satisfied, the state machine waits for a new sample set (X, Y,
Z, V) and starts the evaluation again in the same state.

A transition to the reset pointer occurs whenever the “RESET condition” is true (PP = RP).
A transition to the next step occurs whenever the “RESET condition” is false and “NEXT condition” is true and (PP

=PP +1).
Figure 10. Single state description
from State n-1

_ . State n

go to Reset Pointer h NO

v
1 YES RESET NO NEXT
CONDITION > CONDITION
SATISFIED SATISFIED
YES

v

go to State n+1

Note: The RESET condition is always evaluated before the NEXT condition. By default, the reset pointer (RP) is
set to the first state, but it is possible to dynamically change the reset pointer (RP) by using SRP/CRP commands.

Since a condition is coded over four bits, a maximum of sixteen different conditions can be coded: the list of
available conditions is shown in the following table. There are three types of conditions:

. timeouts: these conditions are true when the TC counter, preloaded with a timer value, reaches zero;

AN5273 - Rev 2 page 31/68

3

AN5273

Reset/Next conditions

. threshold comparisons: these conditions are true when enabled inputs such as accelerometer XYZ axis or
norm are higher (or lower) than a programmed threshold;

V=

24,2

x“+y“+z

. zero-crossing detection: these conditions are true when an enabled input crosses the zero level.

1h
2h
3h
4h
5h

6h

7h

8h

9h
Ah
Bh
Ch

Dh

Eh

Fh

T
TI2
TI3
Ti4

GNTH1

GNTH2

LNTH1

LNTH2

GLTH1
LLTH1
GRTH1
LRTH1

PzC

NzC

CHKDT

Table 52. Conditions

S S T

No operation
Timer 1 (16-bit value) valid
Timer 2 (16-bit value) valid
Timer 3 (8-bit value) valid
Timer 4 (8-bit value) valid
Any triggered axis > THRESH1

Any triggered axis > THRESH2
Any triggered axis £ THRESH1
Any triggered axis £ THRESH2

All triggered axes > THRESH1

All triggered axes < THRESHA1

Any triggered axis > -THRESH1
Any triggered axis < - THRESH1

Any triggered axis crossed zero
value, with positive slope

Any triggered axis crossed zero
value, with negative slope

Check result from a decision tree vs.

expected

Execution moves to another condition

No evaluation of data samples

Input signal, triggered with mask,
compared to threshold

Input signal, triggered with mask,
crossing zero value

Requires Machine Learning Core
configuration

TC, TIMER1
TC, TIMER1, TIMER2
TC, TIMER3
TC, TIMERS, TIMER4
THRESH1, one MASK

THRESH1,
THRESH2, one MASK

THRESHT1, one MASK

THRESH1,
THRESH2, one MASK

THRESH1, one MASK
THRESH1, one MASK
THRESH1, one MASK
THRESH1, one MASK

PAS

PAS

DECTREE

The last column of the table above indicates the resource needed by the conditions. These resources are
allocated inside the Variable Data section and can be different between one FSM and another. For correct FSM
behavior, it is mandatory to set the amount of resources needed by each program in the fixed data section.

Note: Having the same condition for the NEXT and the RESET condition does not make sense. Consequently,
Opcodes such as 11h do not implement the TI1 | TI1 condition, but implement some commands: for example, the
opcode 11h implements the CONT command.

ANS5273 - Rev 2

page 32/68

m ANS5273

Reset/Next conditions

711 NOP (0h)
Description: NOP (no operation) is used as filler for the RESET/NEXT pair for some particular conditions which
don’t need an active opposite condition.
Actions:
. If NOP is in RESET condition: when a new sample set is ready, evaluates only the NEXT condition;
. If NOP is in NEXT condition: when a new sample set is ready, evaluates only the RESET condition.

7.1.2 TI1 (1h)
Description: TI1 condition counts and evaluates the counter value of the TC bytes.
Action:
. When the program pointer moves to a state with a TI1 condition, TC = TIMER1;
. When a new sample set (X, Y, Z, V) occurs, then TC = TC — 1:
- If TC > 0, continue comparisons in the current state (wait for new samples);
- If TC = 0, the condition is valid:
° If TI1 is in RESET position, PP = RP;
° If TI1 is in NEXT position, PP = PP + 1.

71.3 TI2 (2h)
Description: TI2 condition counts and evaluates the counter value of the TC bytes.
Action:
. When the program pointer moves to a state with a TI2 condition, TC = TIMERZ2;
. When a new sample set (X, Y, Z, V) occurs, then TC = TC — 1:
- If TC > 0, continue comparisons in the current state (wait for new samples);
- If TC = 0, the condition is valid:
° If TI2 is in RESET position, PP = RP;
° If TI2 is in NEXT position, PP = PP + 1.

71.4 TI3 (3h)
Description: TI3 condition counts and evaluates the counter value of the TC byte.
Action:
. When the program pointer moves to a state with a TI3 condition, TC = TIMERS;
. When a new sample set (X, Y, Z, V) occurs, then TC = TC — 1:
- If TC > 0, continue comparisons in the current state (wait for new samples);
- If TC = 0, the condition is valid:
° If TI3 is in RESET position, PP = RP;
° If TI3 is in NEXT position, PP = PP + 1.

71.5 TI4 (4h)
Description: Tl4 condition counts and evaluates the counter value of the TC byte.
Action:
. When the program pointer moves to a state with a T4 condition, TC = TIMER4;
. When a new sample set (X, Y, Z, V) occurs, then TC = TC — 1:
- If TC > 0, continue comparisons in the current state (wait for new samples);
- If TC = 0, the condition is valid:
° If TI4 is in RESET position, PP = RP;
° If TI4 is in NEXT position, PP = PP + 1.

AN5273 - Rev 2 page 33/68

ANS5273

Reset/Next conditions

3

71.6 GNTH1 (5h)

Description: GNTH1 condition is valid if any triggered axis of the data sample set (X, Y, Z, V) is greater than
threshold 1 level. Threshold is: THRESH1 + HYST.

Note: The HYST value is involved in the threshold comparison only if the CONFIG_A(HYST) bit of the fixed data
section is set to ‘1’ and the HYST value in the variable data section is not ‘0’.

Action:

. When a new sample set (X, Y, Z, V) occurs, check the condition:
- If GNTH1 is valid and it is in RESET position, PP = RP;
- If GNTH1 is valid and it is in NEXT position, PP = PP + 1.

71.7 GNTH2 (6h)

Description: GNTH2 condition is valid if any triggered axis of the data sample set (X, Y, Z, V) is greater than
threshold 2 level. Threshold is: THRESH2 + HYST.

Note: The HYST value is involved in the threshold comparison only if the CONFIG_A(HYST) bit of the fixed data
section is set to ‘1’ and the HYST value in the variable data section is not ‘0’.

Action:

. When a new sample set (X, Y, Z, V) occurs, check the condition:
- If GNTH2 is valid and it is in RESET position, PP = RP;
- If GNTH2 is valid and it is in NEXT position, PP = PP + 1.

71.8 LNTH1 (7h)

Description: LNTH1 condition is valid if any triggered axis of the data sample set (X, Y, Z, V) is lower than or equal
to threshold 1 level. Threshold is: THRESH1 - HYST.

Note: The HYST value is involved in the threshold comparison only if the CONFIG_A(HYST) bit of the fixed data
section is set to ‘1’ and the HYST value in variable data section is not ‘0’.

Action:

. When a new sample set (X, Y, Z, V) occurs, check the condition:
- If LNTH1 is valid and it is in RESET position, PP = RP;
- If LNTH1 is valid and it is in NEXT position, PP = PP + 1.

7.1.9 LNTH2 (8h)

Description: LNTH2 condition is valid if any triggered axis of the data sample set (X, Y, Z, V) is lower than or equal
to threshold 2 level. Threshold is: THRESH2 - HYST.

Note: The HYST value is involved in the threshold comparison only if the CONFIG_A(HYST) bit of the fixed data
section is set to ‘1’ and the HYST value in variable data section is not ‘0’.

Action:

. When a new sample set (X, Y, Z, V) occurs, check the condition:
- If LNTH2 is valid and it is in RESET position, PP = RP;
- If LNTH2 is valid and it is in NEXT position, PP = PP + 1.

7.1.10 GLTH1 (9h)

Description: GLTH1 condition is valid if all axes of the data sample set (X, Y, Z, V) are greater than threshold 1
level. Threshold is: THRESH1 + HYST.

Note: The HYST value is involved in the threshold comparison only if the CONFIG_A(HYST) bit of the fixed data
section is set to ‘1’ and the HYST value in variable data section is not ‘0’.

Action:

. When a new sample set (X, Y, Z, V) occurs, check the condition:
- If GLTH1 is valid and it is in RESET position, PP = RP;
- If GLTH1 is valid and it is in NEXT position, PP = PP + 1.

AN5273 - Rev 2 page 34/68

ANS5273

Reset/Next conditions

3

7.1.11 LLTH1 (Ah)

Description: LLTH1 condition is valid if all axes of the data sample set (X, Y, Z, V) are lewer less than or equal to
threshold 1 level. Threshold is: THRESH1 - HYST.

Note: The HYST value is involved in the threshold comparison only if the CONFIG_A(HYST) bit of the fixed data
section is set to ‘1’ and the HYST value in variable data section is not ‘0’.

Action:

. When a new sample set (X, Y, Z, V) occurs, check the condition:
- If LLTH1 is valid and it is in RESET position, PP = RP;
- If LLTH1 is valid and it is in NEXT position, PP = PP + 1.

7.1.12 GRTH1 (Bh)

Description: GRTH1 condition is valid if any triggered axis of the data sample set (X, Y, Z, V) is greater than
threshold 1 level. Threshold is: — (THRESH1 + HYST).

Note: The HYST value is involved in the threshold comparison only if the CONFIG_A(HYST) bit of the fixed data
section is set to ‘1’ and the HYST value in variable data section is not ‘0’.

Action:

. When a new sample set (X, Y, Z, V) occurs, check the condition:
- If GRTH1 is valid and it is in RESET position, PP = RP;
- If GRTH1 is valid and it is in NEXT position, PP = PP + 1.

7.1.13 LRTH1 (Ch)

Description: LRTH1 condition is valid if any triggered axis of the data sample set (X, Y, Z, V) is less than or equal
to threshold 1 level. Threshold is: — (THRESH1 — HYST).

Note: The HYST value is involved in the threshold comparison only if the CONFIG_A(HYST) bit of the fixed data
section is set to ‘1’ and the HYST value in variable data section is not ‘0’.

Action:

. When a new sample set (X, Y, Z, V) occurs, check the condition:
- If LRTH1 is valid and it is in RESET position, PP = RP;
- If LRTH1 is valid and it is in NEXT position, PP = PP + 1.

7.1.14 PZC (Dh)

Description: PZC condition is valid if any triggered axis of the data sample set (X, Y, Z, V) crossed the zero level,
with a positive slope.

Action:
. When a new sample set (X, Y, Z, V) occurs, check the condition:
- If a zero-crossing event with positive slope occurs and PZC is in RESET position, PP = RP;
- If a zero-crossing event with positive slope occurs and PZC is in NEXT position, PP = PP + 1.

7.1.15 NZC (Eh)

Description: NZC condition is valid if any triggered axis of the data sample set (X, Y, Z, V) crossed the zero level,
with a negative slope.

Action:
. When a new sample set (X, Y, Z, V) occurs, check the condition:
- If a zero-crossing event with negative slope occurs and NZC is in RESET position, PP = RP;
- If a zero-crossing event with negative slope occurs and NZC is in NEXT position, PP = PP + 1.

AN5273 - Rev 2 page 35/68

‘_ ANb5273
’l Reset/Next conditions

7.1.16 CHKDT (Fh)
Description: CHKDT condition is valid if the result of the selected decision tree is the expected one. For additional
information about how to properly configure the Decision Tree Interface refer to Section 6.8 Decision Tree
interface.
Action:
. When a new sample set (X, Y, Z, V) occurs, then check the output of the selected decision tree; if the output
is the expected one:
- If CHKDT is in RESET position, PP = RP;
— If CHKDT is in NEXT position, PP = PP + 1.

ANS5273 - Rev 2 page 36/68

AN5273

Commands

3

7.2 Commands
Commands are used to modify the program behavior in terms of flow control, output and synchronization.

Commands are immediately executed (no need for a new sample set): when a command is executed, the
program pointer is set to the next line, that is immediately evaluated:

. if new line is a command, it is immediately executed again;

. if new line is a condition, it will be executed when the next sample is processed.

Some commands may need parameters that must be defined (through dedicated opcodes reporting the
parameter value) just below the command opcode. Refer to the example below that shows three consecutive

opcodes used to dynamically change the value of the “THRESH1” resource when the STHR1 command is
executed:

“AAh” (STHR1 command)
“CDh” (18t parameter)
“3Ch” (2nd parameter)

When the program pointer reaches the “AAh” (STHR1 command) state, the device recognizes that this is a
command which requires two parameters: these three states are immediately executed without waiting for a new
sample set. After the command execution is completed, the THRESH1 resource value is set to “3CCDh”, equal to
“1.2”.

Table 53. List of commands

STOP Stop execution, and wait for a new start from reset pointer None
11h CONT Continues execution from reset pointer None
22h CONTREL ' Continues execution from reset pointer, resetting temporary mask None
33h SRP Set reset pointer to next address/state None
44h CRP Clear reset pointer to first program line None
55h SETP Set parameter in program memory Byte 1: address

Byte 2: value
66h SELMA Select MASKA and TMASKA as current mask None
77h SELMB | Select MASKB and TMASKB as current mask None
88h SELMC | Select MASKC and TMASKC as current mask None
99h ouTC Write the temporary mask to output registers None

Byte 1: THRESH1 [LSB]
Byte 2: THRESH1 [MSB]
Byte 1: THRESH2 [LSB]
Byte 2: THRESH2 [MSB]

AAh STHR1 Set new value to THRESH1 register

BBh STHR2 | Set new value to THRESH2 register

CCh SELTHR1 | Selects THRESH1 instead of THRESH3 None
DDh SELTHR3 ' Selects THRESH3 instead of THRESH1 None
EEh SISW Swaps sign information to opposite in selected mask None
FFh REL Reset temporary mask to default None
12h SSIGNO | Set UNSIGNED comparison mode None
13h SSIGN1 | Set SIGNED comparison mode None
14h SRTAMO Do not reset temporary mask after a next condition true None
21h SRTAM1 Reset temporary mask after a next condition true None

Byte 1: input value for

23h SINMUX Set input multiplexer -
multiplexer

AN5273 - Rev 2 page 37/68

AN5273

Commands

3

STIMER3 ' Set new value to TIMERS register Byte 1: TI3 value
31h STIMER4 Set new value to TIMERA4 register Byte 1: T4 value
32h SWAPMSK Swap mask selection MASKA <=> MASKB; MASKC unaffected None
34h INCR Increase long counter +1, check long counter timeout and clear None

Byte 1: conditions
41h JMP Jump address for two Next conditions Byte 2: reset jump address
Byte 3: next jump address

42h CANGLE Clear angle

43h SMA Set MASKA and TMASKA Byte 1: MASKA value
DFh SMB Set MASKB and TMASKB Byte 1: MASKB value
FEh SMC Set MASKC and TMASKC Byte 1: MASKC value
5Bh SCTCO | Clear Time Counter TC on next condition true None
7Ch SCTC1 Don't clear Time Counter TC on next condition true None
C7h UMSKIT | Unmask interrupt generation when setting OUTS None
EFh MSKITEQ !\:/Ihzsnkgienterrupt generation when setting OUTS if OUTS does not None
F5h MSKIT Mask interrupt generation when setting OUTS None

7.21 STOP (00h)
Description: STOP command halts execution and waits for host restart. This command is used to control the end
of the program.
Parameters: None.
Actions:
. Outputs the resulting mask to OUTSy register;

. Generates interrupt (if enabled, accordingly with use of MSKIT / MSKITEQ / UMSKIT commands);

. Stops itself by setting the CONFIG_B(STOPDONE) bit of the fixed data section to ‘1’. The user should
disable and enable the corresponding state machine bit in the FSM_ENABLE_A (46h) or FSM_ENABLE_B
(47h) register to restart the program. In this case, the Start Routine is performed. For additional information
about the Start Routine refer to Section 9 Start routine.

7.2.2 CONT (11h)

Description: CONT command loops execution to the reset point. This command is used to control the end of the
program.

Parameters: None.

Actions:

. Outputs the resulting mask to the OUTS, registers;

. Generates interrupt (if enabled, accordingly with use of MSKIT / MSKITEQ / UMSKIT commands);
. PP = RP.

AN5273 - Rev 2 page 38/68

m ANS5273

Commands

7.23 CONTREL (22h)

Description: CONTREL command loops execution to the reset point. This command is used to control the end of
the program. In addition, it resets the temporary mask value to its default value.

Parameters: None.

Actions:

. Outputs the resulting mask to the OUTS registers;

. Resets temporary mask to default value;

. Generates interrupt (if enabled, accordingly with use of MSKIT / MSKITEQ / UMSKIT commands);
. PP = RP.

7.2.4 SRP (33h)

Description: SRP command sets the reset pointer to the next address/state. This command is used to modify the
starting point of the program.

Parameters: None.
Actions:

. RP = PP + 1;
. PP =PP + 1.

7.2.5 CRP (44h)
Description: CRP command clears the reset pointer to the start position (at the beginning of the program code).
Parameters: None.
Actions:
. RP = beginning of program code;
. PP =PP +1.

7.2.6 SETP (55h)

Description: SETP command allows the configuration of the state machine currently used to be modified. This
command is used to modify a byte value at a desired address of the current state machine.

Parameters: two bytes.

. 18t parameter: address (8 bits) of the byte to be modified. This address is relative to the current state
machine (address 00h refers to CONFIG_A byte);

« 2nd parameter: new value (8 bits) to be written in the 15t parameter address.

Actions:

. byte value addressed by 15t parameter = 2" parameter
. PP =PP + 3.

7.2.7 SELMA (66h)
Description: SELMA command sets MASKA / TMASKA as current mask.
Parameters: None.
Actions:
. MASK_A is selected. It sets the SETTINGS(MASKSEL[1:0]) bits of the fixed data section to ‘00’;
. PP =PP +1.

7.2.8 SELMB (77h)
Description: SELMB command sets MASKB / TMASKB as current mask.
Parameters: None.
Actions:
. MASK_B is selected. It sets the SETTINGS(MASKSEL[1:0]) bits of the fixed data section to ‘01’;
. PP =PP +1.

AN5273 - Rev 2 page 39/68

m ANS5273

Commands

7.2.9 SELMC (88h)
Description: SELMC command sets MASKC / TMASKC as current mask.
Parameters: None.
Actions:
. MASK_C is selected. It sets the SETTINGS(MASKSEL[1:0]) bits of the fixed data section to ‘“10’;
. PP =PP +1

7.2.10 OUTC (99h)

Description: OUTC stands for output command. This command is used to update the OUTS register value to the
current temporary mask value and to generate an interrupt (if enabled).

Parameters: None.

Actions:

. Updates the OUTS register of the current state machine to the selected temporary mask value;

. Generates interrupt (if enabled, accordingly with use of MSKIT / MSKITEQ / UMSKIT commands);
. PP =PP +1.

7.2.11 STHR1 (AAh)

Description: STHR1 command sets the THRESH1 value to a new desired value. THRESH1 is a half floating point
(16 bits) number.

Parameters: two bytes.

. 18t parameter: THRESH1 LSB value (8 bits);
. 2nd parameter: THRESH1 MSB value (8 bits).
Actions:

. Sets new value for THRESH1;
. PP =PP + 3.

7.2.12 STHR2 (BBh)

Description: STHR2 command sets the THRESH2 value to a new desired value. THRESH?2 is a half floating point
(16bits) number.

Parameters: two bytes.

. 18t parameter: THRESH2 LSB value (8 bits);
. 2nd parameter: THRESH2 MSB value (8 bits).
Actions:

. Sets new value for THRESH2;
. PP =PP + 3.

7.2.13 SELTHR1 (CCh)

Description: after executing the SELTHR1 command, the THRESH1 value is used instead of the THRESH3 value
when the GNTH1, LNTH1, GLTH1, LLTH1, GRTH1, LRTH1 conditions are performed.

Parameters: None.

Actions:
. Selects THRESH1 instead of THRESHS3. It sets the SETTINGS(THRS3SEL) bit of the fixed data section to
0

- PP=PP+1.

AN5273 - Rev 2 page 40/68

m ANS5273

Commands

7.2.14 SELTHRS3 (DDh)

Description: after executing the SELTHR3 command, the THRESHS value is used instead of the THRESH1 value
when the GNTH1, LNTH1, GLTH1, LLTH1, GRTH1, LRTH1 conditions are performed.

Parameters: None.

Actions:

. Selects THRESH3 instead of THRESHA1. It sets the SETTINGS(THRS3SEL) bit of the fixed data section to
4 -

. PP =PP +1.

7.215 SISW (EEh)
Description: SISW command swaps the temporary axis mask sign to the opposite sign.
Parameters: None.
Actions:
. Changes selected temporary mask axis sign to the opposite:
— If sign(axis) is positive, new sign(axis) is negative;
— If sign(axis) is negative, new sign(axis) is positive;
- If axis information is zero, no changes.
. PP=PP +1.

7.2.16 REL (FFh)
Description: REL command releases the temporary axis mask information.
Parameters: None.
Actions:
. Resets current temporary masks to the default value;
. PP =PP +1.

7.217 SSIGNO (12h)
Description: SSIGNO command sets the comparison mode to “unsigned”.
Parameters: None.
Actions:
. Sets comparison mode to “unsigned”. It sets the SETTINGS(SIGNED) bit of the fixed data section to ‘0’;
. PP =PP + 1.

7.2.18 SSIGN1 (13h)
Description: SSIGN1 command sets the comparison mode to “signed” (default behavior).
Parameters: None.
Actions:
. Sets comparison mode to “signed”. It sets the SETTINGS(SIGNED) bit of the fixed data section to ‘1’;
. PP=PP +1.

7.2.19 SRTAMO (14h)

Description: SRTAMO command is used to preserve the temporary mask value when a NEXT condition is true
(default behavior).

Parameters: None.
Actions:

. Temporary axis mask value does not change after valid NEXT condition. It sets the SETTINGS(R_TAM) bit
of the fixed data section to ‘0’;

- PP=PP+1.

AN5273 - Rev 2 page 41/68

m ANS5273

Commands

7.2.20 SRTAM1 (21h)
Description: SRTAM1 command is used to reset the temporary mask when a NEXT condition is true.
Parameters: None.
Actions:

. Temporary axis mask value is reset after valid NEXT condition. It sets the SETTINGS(R_TAM) bit of the
fixed data section to ‘1’;

- PP=PP+1.

7.2.21 SINMUX (23h)

Description: SINMUX command is used to change the input source for the current state machine. If the SINMUX
command is not performed, the accelerometer signal is automatically selected as the default input source.

Parameters: one byte.
. 18t parameter: value to select input source:
0: accelerometer [ay ay a; a,];

: gyroscope [gx Gy 9z 9vl;
: calibrated magnetometer [m, m, m, m,J;

: first filtered signal from Machine Learning Core” [hy hy hz hJ;
: second filtered signal from Machine Learning Core” [/, Iy Iz 1];
: first filtered signal norm from Machine Learning Core” [0 0 0 Vj];

: second filtered signal norm from Machine Learning Core” [0 0 0 VJ];

N oo a R~ 0N -

: integrated gyroscope signal [dy dy, dz d\];

Actions:

. Selects input signal accordingly with set parameter. It configures the SETTINGS(IN_SEL[2:0]) bits of the
fixed data section accordingly to selected input source signal (it can be 000b, 001b, 010b, 011b, 100b, 101b,
110b or 111b);

. PP =PP + 2.
Note: (") Filter type could be HP / LP / lIR1/ IIR2 depending on Machine Learning Core configuration.

7.2.22 STIMERS (24h)
Description: STIMER3 command is used to set a new value for TIMERS3.
Parameters: one byte.
. 18t parameter: new TIMER3 value.

Actions:
. Sets new TIMER3 value;
. PP =PP + 2.

7.2.23 STIMER4 (31h)
Description: STIMER4 command is used to set a new value for TIMERA4.
Parameters: one byte.
« 18t parameter: new TIMERA4 value.

Actions:
. Sets new TIMERA4 value;
. PP =PP + 2.

7.2.24 SWAPMSK (32h)
Description: SWAPMSK command is used to swap MASKA and MASKB selection. MASKC is not affected.
Parameters: None.
Actions:
. Swaps MASKA with MASKB;

AN5273 - Rev 2 page 42/68

m ANS5273

Commands

- PP=PP+1.

7.2.25 INCR (34h)

Description: INCR command is used to reset the long counter if the FSM_LC_CLEAR bit of the
FSM_LONG_COUNTER_CLEAR (4Ah) register is set to ‘1’, or to increase the long counter value by one. The
long counter value is stored in the FSM_LONG_COUNTER_L (48h) and FSM_LONG_COUNTER_H (49h)
registers.

Parameters: None.
Actions:

. Resets the long counter value if the FSM_LC_CLEAR bit of FSM_LONG_COUNTER_CLEAR (4Ah) register
is set to ‘1’, or increases the long counter value by one;

- PP=PP+1.

7.2.26 JMP (41h)

Description: JMP command is a special command characterized by a “NEXT1 | NEXT2” condition, with two
different jump addresses.

Parameters: three bytes.
. 18t parameter: NEXT1 | NEXT2 condition;
. 2nd parameter: jump address if NEXT1 condition is true;
. 3d parameter: jump address if NEXT2 condition is true.
The NEXT1 condition is evaluated before the NEXT2 condition. Jump addresses are relative to the current state
machine (address 00h refers to CONFIG_A byte).
Actions:
. It sets to ‘1’ the CONFIG_B(JMP) bit of the fixed data section. Evaluates the “NEXT1 | NEXT2” condition:
- If “NEXT1” condition is true, PP = 2" parameter address;
- Else if “NEXT2” condition is true, PP = 3rd parameter address;
— Else waits for a new sample set and evaluates again the "NEXT1 | NEXT2" condition.

7.2.27 CANGLE (42h)

Description: CANGLE command is used to clear integrated gyroscope values. If this command is performed,
integrated angle values are no longer cleared when a next condition is true (default behavior), but in the following
cases:

. every time a CANGLE command is performed (when a new sample arrives);
. if a reset condition is true.

Parameters: None.
Actions:

. Clear angle values;
. PP =PP + 1.

7.2.28 SMA (43h)
Description: SMA command is used to set a new value for MASKA and TMASKA.
Parameters: one byte.
. 18t parameter: new MASKA and TMASKA value.

Actions:
. Set new MASKA and TMASKA value;
. PP =PP + 2.

7.2.29 SMB (DFh)
Description: SMB command is used to set a new value for MASKB and TMASKB.
Parameters: one byte.
. 18t parameter: new MASKB and TMASKB value.

AN5273 - Rev 2 page 43/68

m ANS5273

Commands

Actions:
. Set new MASKB and TMASKB value;
. PP =PP + 2.

7.2.30 SMC (FEh)
Description: SMC command is used to set a new value for MASKC and TMASKC.
Parameters: one byte.
. 18t parameter: new MASKC and TMASKC value.

Actions:
. Set new MASKC and TMASKC value;
. PP =PP + 2.

7.2.31 SCTCO (5Bh)

Description: SCTCO command is used to reset the TC byte (time counter) when a NEXT condition is true (default
behavior).

Parameters: None.

Actions:

. TC (time counter) byte value is reset after valid NEXT condition;
. PP=PP +1.

7.2.32 SCTC1 (7Ch)
Description: SCTC1 command is used to preserve the TC byte (time counter) when a NEXT condition is true.
Parameters: None.
Actions:
. TC (time counter) byte value does not change after valid NEXT condition;
. PP =PP +1.

7.2.33 UMSKIT (C7h)

Description: UMSKIT command is used to unmask interrupt generation when the OUTS register value is updated
(default behavior). Refer to the OUTC / CONT / CONTREL commands for more details about interrupt generation.

Parameters: None.

Actions:

. Unmask interrupt generation when setting the OUTS register;
. PP=PP +1.

7.2.34 MSKITEQ (EFh)

Description: MSKITEQ command is used to mask interrupt generation when the OUTS register value is updated
but its value does not change (temporary mask value is equal to current OUTS register value). Refer to the
OUTC / CONT / CONTREL commands for more details about interrupt generation.

Parameters: None.

Actions:

. Mask interrupt generation when setting the OUTS register if OUTS does not change;
. PP =PP +1.

7.2.35 MSKIT (F5h)

Description: MSKIT command is used to mask interrupt generation when the OUTS register value is updated.
Refer to the OUTC / CONT / CONTREL commands for more details about interrupt generation.

Parameters: None.

Actions:

. Mask interrupt generation when setting the OUTS register;
. PP=PP +1.

AN5273 - Rev 2 page 44/68

‘7 ANS5273

FSM configuration example

8 FSM configuration example

This section contains an example that explains all write operations that have to be done in order to configure the
LSM6EDSOX FSM. A few steps have to be followed:

. configure the FSM registers inside the embedded function registers set;
. configure the FSM registers inside the embedded advanced features registers set;
. configure the LSM6DSOX sensor (accelerometer and / or gyroscope).

In this example, two simple programs are configured:
. PROGRAM 1: wrist tilt (around the x-axis) algorithm, routed on the INT1 pin;
. PROGRAM 2: wake-up algorithm, routed on the INT2 pin.

Both algorithms are intended to use accelerometer data only at a sample rate of 26 Hz.
Refer to the figure below for details about the program data section and the instructions section.

Figure 11. FSM configuration example

oace-pooness | wave | 7 | 6 | 5 | & | 3 | 2 | 1 | o |

CONFIG A ColGmak 00 oL(1shorttimen)
coviss 0 0 0 o [0 | 0 0 0
size
SETTINGS o o0 o

4 - 04h RESET POINTER

PROGRAM POINTER
2 [ion— R
IR vaska 80N (+X)

8 BRI vaska 00h
& aom S ooh
EEETI e 106 (16 somples)
EEEECE T3 o
EERETTI out oon
IETTIN ntH | NOP 50h
T stop 00h

CONFIG A o Ol(tmas) 00 00
I CONFIG B 0o 0o 0o 0 0o 0 0

B7AEh (-0.480)

4-12h SIZE
4-13h SETTINGS o o o
4-14h RESET POINTER

4-15h PROGRAM POINTER

3C66h (1.100)
4 - 17h

ERESEEEE vaska 02h (+V)
ST tvaska 00h
T NOP | GNTHL 05h
IEEEEE contReL 22h

Refer to the following script for the complete device configuration:

1. Write 80h to register 01h /I Enable access to embedded function registers
2. Write 01h to register 05h /Il EMB_FUNC_EN_B(FSM_EN) ="1'

AN5273 - Rev 2 page 45/68

ANS5273

FSM configuration example

ANS5273 - Rev 2

© ® N o o M w

1.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
.
42.
43.
44,
45,

Write 4Bh to register 5Fh
Write 03h to register 46h
Write 00h to register 47h
Write 01h to register 0Bh
Write 00h to register OCh
Write 02h to register OFh
Write 00h to register 10h
Write 40h to register 17h
Write 11h to register 02h
Write 7Ah to register 08h
Write 00h to register 09h
Write 00h to register 09h
Write 02h to register 09h
Write 02h to register 09h
Write 00h to register 09h
Write 04h to register 09h
Write 41h to register 02h
Write 00h to register 08h
Write 51h to register 09h
Write 00h to register 09h
Write 10h to register 09h
Write 00h to register 09h
Write 00h to register 09h
Write 00h to register 09h
Write AEh to register 09h
Write B7h to register 09h
Write 80h to register 09h
Write 00h to register 09h
Write 00h to register 09h
Write 10h to register 09h
Write 53h to register 09h
Write 99h to register 09h
Write 50h to register 09h
Write 00h to register 09h
Write 50h to register 09h
Write 00h to register 09h
Write 0Ch to register 09h
Write 00h to register 09h
Write 00h to register 09h
Write 00h to register 09h
Write 66h to register 09h
Write 3Ch to register 09h
Write 02h to register 09h

/l EMB_FUNC_ODR_CFG_B (FSM_ODR) ='01' (26Hz)
/I FSM_ENABLE_A ='03h'

/l FSM_ENABLE_B ="'00h'

/I FSM_INT1_A ='01h’

/I FSM_INT1_B ="'00h'

/I FSM_INT2_A ='02h’

/I FSM_INT2_B ="'00h’

/I PAGE_RW: enable write operation

/I Enable access to embedded advanced features registers, PAGE_SEL = 1
/| PAGE_ADDRESS = 7Ah

/I ' Write 00h to register FSM_LONG_COUNTER_L
/I Write 00h to register FSM_LONG_COUNTER_H
/I Write 02h to register FSM_PROGRAMS

/I Dummy write in order to increment the write address
/I Write 00h to register FSM_START_ADDRESS_L
/I Write 04h to register FSM_START_ADDRESS_H
/Il PAGE_SEL =4

/| PAGE_ADDRESS = 00h

/I CONFIG_A

/Il CONFIG_B

/I SIZE

/I SETTINGS

/I RESET POINTER

/I PROGRAM POINTER

/l THRESH1 LSB

/I THRESH1 MSB

/I MASKA

/I TMASKA

/I TC

/l TIMER3

/I GNTH1 | TI3

/I OUTC

/Il GNTH1 | NOP

/I STOP (mandatory for having even SIZE bytes)
/I CONFIG_A

/I CONFIG_B

/I SIZE

/I SETTINGS

/I RESET POINTER

/I PROGRAM POINTER

/l THRESH1 LSB

/I THRESH1 MSB

/I MASKA

page 46/68

m ANS5273

FSM configuration example

46. Write 00h to register 09h /I TMASKA

47. Write 05h to register 09h /I NOP | GNTH1

48. Write 22h to register 09h /I CONTREL

49. Write 01h to register 02h /I Disable access to embedded advanced features registers, PAGE_SEL =0
50. Write 00h to register 17h /I PAGE_RW: disable write operation

51. Write 00h to register 01h /I Disable access to embedded function registers

52. Write 02h to register 5Eh /I MD1_CFG(INT1_EMB_FUNC) ="1"
53. Write 02h to register 5Fh /I MD2_CFG(INT2_EMB_FUNC) ="'1"
54. Write 20h to register 10h /I CTRL1_XL ='20h' (26 Hz, +2 g)

ANS5273 - Rev 2 page 47/68

m AN5273

Start routine

9 Start routine

When the FSM is enabled, a start routine is automatically executed. This routine performs the following tasks:
. the CONFIG_B(STOPDONE) and CONFIG_B(JMP) bits are reset;
. the PP and RP pointers are initialized to the first line of code;
. the SETTINGS field is initialized with default value 0x20 which means:
— MASKSEL =00
— SIGNED = ‘1
- R_TAM =0}
— THRS3SEL =0}
— IN_SEL =*000'.
. the associated output register OUTS is cleared;
. assign to all declared temporary masks the value of the corresponding original mask (TMASK, = MASKy);

. if timers are declared, the time counter is initialized to 0 (TC = 0);

. if decimation is declared, the decimation counter is initialized with the programmed decimation time value
(DESC = DEST);

. if previous axis sign is declared, it is initialized to 0 (PAS = 0);

. if gyroscope angle computation is declared, the four angles are initialized to 0 (DX = DY = DZ = DV = 0);

. if CONFIG_B(LC) is active, the long counter is reset.

When the start routine is performed, the program always restarts from a known state, independently of the way it
was stopped. However it should be noted that the default mode implies:

. MASKA selected as running mask (MASKSEL = ‘00’);

. signed comparison mode (SIGNED = ‘1’);

. do not release temporary mask after a next condition is true (R_TAM = ‘0’);

. threshold1 selected instead of threshold3 for comparisons (THRS3SEL = ‘0’);

. input multiplexer set to select accelerometer data (IN_SEL = ‘000’).

AN5273 - Rev 2 page 48/68

‘7 ANS5273

Examples of state machine configurations

10 Examples of state machine configurations

10.1 Toggle

Toggle is a simple state machine configuration that generates an interrupt every n sample.
The idea is to use a timer to count n samples.

Figure 12. Toggle state machine example

pevres | nNave] 7 | 6 | s | 4 | 3 | 2 | 1 | o |
00

00h CONFIG A
01h CONFIG B
02h SIZE
03h SETTINGS
04h RESET POINTER
05h PROGRAM POINTER

oo | A =
B e 10 (16 samples
oz [T TR R R

T covwe 2

Instructions section description

PP = 08h: the first time this state is reached, TC = TI3. Each time a new sample set is generated, the TC byte is
decreased by one. When TC =0, PP = PP + 1.

PP = 09h: CONTREL command is performed without needing a sample set: this generates an interrupt and resets
the program (PP = RP = 08h).

In the example, the interrupt is generated every 16 samples. TI3 can be configured in order to get the desired
toggle period which depends on the configured FSM_ODR.

AN5273 - Rev 2 page 49/68

‘7 AN5273

Wake-up

10.2 Wake-up

For ultra-low-power applications it is desirable to have an interrupt signal that wakes up the system after a
movement.

The idea is to use the nominal gravity value of 1.0 g and apply a little hysteresis against the nominal gravity value.

Figure 13. Wake-up state machine example

| vres [nave | 7 | 6 | 5 | 4 | 3 | 2 | 1 [o0 |
- O1(ithreshold) ~ Of(imask) 00 00

CONFIG A
01h CONFIG B
02h SIZE
03h SETTINGS
04h RESET POINTER
osh PROGRAM POINTER
06h
07h

3C00h (1.000)

BT v 02h (+V)
BT vaska 0oh
och | A 41h
BT waoNt 75h
OEh _ 10h (jump address if LNTH1 condition is true)
_ 10h (jump address if GNTH1 condition is true)
T conReL 22h
b 0oh

Instructions section description

PP = 0Ch: JMP command is performed without needing a sample set: the CONFIG_B(JMP) bit is set to ‘1. PP =
PP + 1.

PP = 0Dh: a double condition against threshold 1 is performed (MASKA is selected by default). Since hysteresis
is used, thresholds for the comparison are:

. COND1 (LNTH1): THRESH1 — HYST. Jump address is 10h;

. COND2 (GNTH1): THRESH1 + HYST. Jump address is 10h.

When the vector (magnitude) is outside the hysteresis region (one of the above conditions is true), the PP is set to
address 10h.

PP = 10h: CONTREL command is performed without needing a sample set: this generates an interrupt and resets
the program (PP = RP = 0Ch).

In the example, the wake-up threshold is 1.0 g + 30 mg. When configuring the hysteresis value, the accelerometer
offsets should be taken into account.

AN5273 - Rev 2 page 50/68

‘7 ANS5273

Freefall

10.3 Freefall

This feature is used to detect when a system is dropping (e.g. to protect data on the hard drive). If the object is in
freefall, the acceleration on the X-axis, Y-axis and Z-axis goes to zero.

To implement this function, acceleration on all axes should be less than a configured threshold, for a minimum
configured duration. When this condition is detected, an interrupt is generated.

Figure 14. Freefall state machine example

| evres | Name] 7 | 6 | s | 4 | 3 | 2 | 1 [o |
CONFIG A ~ O1(tthreshold) O(imask) 00 O (Lshorttimer)
01h CONFIG B
02h SIZE
03h SETTINGS
04h RESET POINTER

Sh PROGRAM POINTER

34CDh (0.300)
07h
osn [ENVCTS Ash (%, +, 42
BT wsa oon
onn [oon
T e 03 (3 samples)
ocn [T 121
oon [N 31
B ot s
o osn
B ovminor son
T sor oon

Instructions section description

PP = 0Ch: SSIGNO command is performed without needing a sample set: the SETTINGS(SIGNED) bit is set to
‘0’, indicating that unsigned comparison mode was set. PP = PP + 1.

PP = 0Dh: SRP command is performed without the need of sample set: the RESET POINTER is set to the next
state, OEh. PP = PP + 1.

PP = OEh: if acceleration on one axis is greater than THRESH1, then PP = RP. If acceleration on all axes is lower
than THRESH1 for 3 consecutives samples, then the PP is increased (PP = PP + 1).

PP = 0Fh: OUTC command is performed without needing a sample set: this generates an interrupt and increases
the PP (PP = PP +1).

PP = 10h: if acceleration on one axis is greater than THRESH1, then PP = RP. This means that the device is no
longer in freefall, so the program has to be reset.

In the example, the freefall threshold is set to 0.3 g and the freefall duration is set to 3 samples.

Note: Freefall duration is strictly related to FSM_ODR: for example, if FSM_ODR is set to 26 Hz, the freefall
duration is 115 msec (3 samples / 26 Hz).

AN5273 - Rev 2 page 51/68

m ANS5273

Finite State Machine tool

11 Finite State Machine tool

The Finite State Machine programmability in the device is allowed through a dedicated tool, available as an
extension of the Unico GUI.

1.1 Unico GUI

Unico is the Graphical User Interface for all the MEMS sensor demonstration boards available in the
STMicroelectronics portfolio. It has the possibility to interact with a motherboard based on the STM32
microcontroller (Professional MEMS Tool), which enables the communication between the MEMS sensor and the
PC GUI.

The details of the Professional MEMS Tool board can be found at the following page:

https://www.st.com/content/st_com/en/products/evaluation-tools/product-evaluation-tools/mems-motion-sensor-
eval-boards/steval-mki109v3.html

The Unico GUI is available in three software packages for the three operating systems supported.
. Windows

- https://www.st.com/content/st_com/en/products/embedded-software/evaluation-tool-software/stsw-
mki109w.html

. Linux
- https://www.st.com/content/st_com/en/products/embedded-software/evaluation-tool-software/stsw-
mki109l.html
. Mac OS X

- https://www.st.com/content/st_com/en/products/embedded-software/evaluation-tool-software/stsw-
mki109m.html

Unico GUI allows visualization of sensor outputs in both graphical and numerical format and allows the user to
save or generally manage data coming from the device.

Unico allows access to the MEMS sensor registers, enabling a fast prototype of register setup and easy test of
the configuration directly in the device. It is possible to save the configuration of the current registers in a text file
and load a configuration from an existing file. In this way, the sensor can be re-programmed in few seconds.

The Finite State Machine tool available in the Unico GUI helps the process of register configuration by
automatically generating configuration files for the device. By clicking a few buttons, the configuration file is
available. From these configuration files, the user can create his own library of configurations for the device.

To execute the Finite State Machine tool, the user has to click on the dedicated “FSM” button that is available in
the left side of the main UNICO GUI window as shown in the following figure.

AN5273 - Rev 2 page 52/68

https://www.st.com/content/st_com/en/products/evaluation-tools/product-evaluation-tools/mems-motion-sensor-eval-boards/steval-mki109v3.html
https://www.st.com/content/st_com/en/products/evaluation-tools/product-evaluation-tools/mems-motion-sensor-eval-boards/steval-mki109v3.html
https://www.st.com/content/st_com/en/products/embedded-software/evaluation-tool-software/stsw-mki109w.html
https://www.st.com/content/st_com/en/products/embedded-software/evaluation-tool-software/stsw-mki109w.html
https://www.st.com/content/st_com/en/products/embedded-software/evaluation-tool-software/stsw-mki109l.html
https://www.st.com/content/st_com/en/products/embedded-software/evaluation-tool-software/stsw-mki109l.html
https://www.st.com/content/st_com/en/products/embedded-software/evaluation-tool-software/stsw-mki109m.html
https://www.st.com/content/st_com/en/products/embedded-software/evaluation-tool-software/stsw-mki109m.html

m ANS5273

Unico GUI
Figure 15. Running the Finite State Machine tool
&7 Unico — x
[H Back | SelectPort: |COMS & Connect ¥ Disconnect ‘ P st oswop ¥ Edt
ik Info Options Registers Registers 2 bedded Reg 1 bedded Reg 2 bedded Adv Page 0 bedded Adv Page 1 Sensor Hub Registers Load/Save
Bars
B
Plot r
UNICO
Data
i , I Cross-platform User Interface for MEMS demonstration kits
= life.augmented
FSM
@ .
FIFO GUI Version: 7.0.5.0 Beta
Ld
FIFO Firmware Version: V2.30.3
£
()
in
%' Demonstration kit selected: STEVAL-MKI197V1 (LSM6DSOX)
FFT
® Board: ProfiMEMSTool
FFT
DecTiee
*
Pedomet.
STMicroelectronics Demonstration kit = STEVAL-MKI197V1 (LSMEDSOX) Board = ProfMEMSTool Firmware Version = V2.30.3 Unico Version = 7.0.5.0 Beta

When loaded, the main Finite State Machine tool window is shown.

Figure 16. Finite State Machine tool

sas Finite State Machine - O x
State Machine Selection FSM ODR Long Counter Max Value: | 0000 | Converter
State Machine #1 -| 26Hz vl Long Counter Interrupts: [1 [mirz2 Float: 0.000 | [Float to Float16
Float16: | 0000 | [Float16 to Float
Configuration Interrupt Debug
sM1 ions Section SM1 Status
T R T (e Owm Oz
SM1 Fixed Data Section
Config A [ConfigB o |
Size [Settings o |
RP oo | PP w |
Hysteresis O Decimation O
SM1 Variable Data Section
Thresh1 Timer 1
Threshz Timer 2
Thresh3 Timer 3
Hysteresis Timer 4
Mask A Dest
Mask B
Mask € DeltaT
Temporary Mask A DX
Temporary Mask B DY
Temporary Mask C Dz
Pas ov
[[mplrtsmel“lmiim} [Exmrtsintgl“lmiilz] Reset State Machine - =
= . - = Load Device Save Device

In the top part of the Finite State Machine tool main window, the user can select which state machine is selected
(the selection is applied in both the Configuration tab and Debug tab). It is also possible to configure the FSM
ODR and the long counter parameters. Finally, a converter from float32 to float16 format and viceversa is
available. The converter is used to generate the value to be set in the threshold resources in the Variable Data
Section.

The Finite State Machine tool is mainly composed of three tabs which are detailed in dedicated sections:
. Configuration tab (the one selected by default);

. Interrupt tab;

. Debug tab.

ANS5273 - Rev 2

page 53/68

ANb5273
Unico GUI

11.1.1

ANS5273 - Rev 2

Configuration tab

The configuration tab of the Finite State Machine tool allows the user to implement the program logic. The Ul is
able to abstract the FSM program structure: for this reason, 4 group boxes are shown:

1.

2.
3.
4

SM, Status;

SMy Fixed Data Section;
SMy Variable Data Section;
SMy Instructions Section.

Figure 17. Finite State Machine tool - Configuration tab

s2a Finite State Machine - O X
State Machine Selection FSM ODR Long Counter Max Value: 0000 | Converter
State Machine #1 vl 26Hz vl Long Counter Interrupts: [nt1 [INT2 Float: | 0.175 |

Floatis: | 3194 |

Configuration Interrupt ~ Debug 1
SM1 Instructions Section — SM1 Status
- 3 2

» om Omc ©oo (mwn on () (6208) (Omemorve } Y .o

s e wxvae: ox (o1) (0A0d) ([Comemare)

52 oxip (ORNC @ cvD SELMA - ConfigB
Settings

53 oxi ORNC @ cMD [sELTHRL s 0

Hysteresis Decimation

% or ©wc 000 [o)

s5 o QRN @ovD [canele - SM1 Variable Data Section
Thresh1 (0.175) | 3198 | Timer 1

ss ox2t @RrNc Oa [wop ~ | [LnmH1 ¢ 3
Thresh2 (0.500) | 3800 | Timer 2

7wz ORNC @ ab E—p— - Thresh3 (0.175) | 3198 | Timer 3 ——
Hysteresis Timer 4

S8 0xe3 MUX Value: Mask A 80 | Dest
Mask B 3\ |

s9 24 @R Oavp GNTHZ Mask C DeltaT (@.000) [oooo |
Temporary Mask A [oo | DX (0.000) | oooo |

510 0x25 (O RNC @® cvD STNMUX hd Temporary Mask B [oo | DY (0.000) | oooo |

Temporary Mask C Dz (0.000) [oooo |
Pas (oo | DV (0.000) [oooo |

Desc TC

[Impurtsliltcr‘hdim] [ExpurtShlteHadiu:J

Read FSM Configuration s

Write FSM Configuration ‘ Load Device ‘ ‘ ZoElEEe

In the bottom part of the Configuration tab, the user can manage the device configuration using dedicated
buttons:

Read FSM Configuration: it is used to read the FSM registers and to graphically build the Ul based on
current FSM configuration and programs;

Write FSM Configuration: it is used to write the entire FSM configuration (it includes FSM ODR, Long
Counter parameters, interrupt status and programs);

Reset All: it is used to reset the entire Finite State Machine tool Ul;
Load Device Configuration: it is used to load a .ucf file;

Save Device Configuration: it is used to generate a .ucf file which contains both sensor and FSM register
configurations.

page 54/68

m ANS5273

Unico GUI

1.1.11 SM, Status

The SMx Status groupbox is available in the top-right corner of the Configuration tab.

Figure 18. Configuration tab - SM,, Status

SM1 Status

Enabled O 2

The SMy Status groupbox allows the user to enable/disable the state machine and to route the interrupt status on
the INT1/INT2 pin. In detail:

. the “Enabled” checkbox is used to enable/disable the state machine. It is automatically set if the program
contains at least one instruction and it is automatically reset if the program does not contain any instruction;

. the “INT1” checkbox is used to enable the routing of the state machine interrupt on INT1 pin. This is effective
if the INT1_EMB_FUNC bit of MD1_CFG (5Eh) is set to ‘1’;

. the “INT2” checkbox is used to enable the routing of the state machine interrupt on the INT2 pin. This is
effective if the INT2_EMB_FUNC bit of MD2_CFG (5Fh) is set to ‘1",

11.1.1.2 SMy Fixed Data Section
The SMy Fixed Data Section groupbox is available in the right part of the Configuration tab.

Figure 19. Configuration tab - SM, Fixed Data Section

SM1 Fixed Data Section

Config A [E0 | configB N
Size |2 | settings | oo |
RP | oo | PP | oo |
Hysteresis |:| Dedmation |:|

The SM Fixed Data Section groupbox allows the user to have information about the fixed data section bytes of
the program. These bytes are automatically managed by the Finite State Machine tool. It is also possible to

enable/disable hysteresis and the decimation resources depending on user needs. If enabled, the corresponding
resource will be shown in the SMy Variable Data Section groupbox.

AN5273 - Rev 2 page 55/68

‘ﬁ ANS5273

Unico GUI

11.1.1.3 SM, Variable Data Section
The SMy Variable Data Section groupbox is available in the bottom-right corner of the configuration tab.

Figure 20. Configuration tab — SMy Variable Data Section

SM1 Variable Data Section
Threshi {0.175) 3194 Timer 1

Thresh2 {0.500) 3300 Timer 2
Thresh3 {0.175) 319A Timer 3

Hysteresis Timer 4

Mask A 80 Dest

Mask B 28

Magk C DeltaT (D.000) 0000
Temporary Mask A iy} DX (0.000) 0000
Temporary Mask B a0 DY {0.000) 0000
Temporary Mask C DZ (D.000) Q000
Pas 0o DV (D.000) 0000
Desc TC

The SMy Variable Data Section groupbox simplifies the resource allocation process: all the needed resources are
automatically shown or hidden in the SMy Variable Data Section groupbox depending on the instructions that
compose the SMy Instruction Section. The user has just to set the values of the shown resources.

11.1.1.4 SMy Instructions Section
The SMy Instructions Section groupbox is available in the left part of the Configuration tab.
Figure 21. Configuration tab — SMy Instructions Section

5SM1 Instructions Section

5 D2 @RNC (JCMD [NOP)L ox 07) (gENAddy () Removery . |
s7 o2 ORNC @avD [siMux) ox (23] - ﬁ
58 0x23 MUX Value: 0x [07 | - [) Remove
s ox24a @R Oowo [wiHr (a2 wfox (7]
Jox (23]
511 0x% MUX Value: 0 [00 | - ﬁ
s12 o2z ORNC @ cvD [sELMB) ox [77] - ﬁ
513 o8 ORNC @ ovp [sETHRS) ox (o0 - ﬁ
514 29 @rRvc Oomp (i~ (e ~)ox (73] - ﬁ
s15 ox2a ORNC @ avD [conTrel Jox [22] - ﬁ

—

516 0x28 (D RNC @) CMD STOP - | o [o0

s ox2s ORNC @ cMD [smmux

AN5273 - Rev 2 page 56/68

m ANS5273

Unico GUI

The SMy Instructions Section groupbox helps the user to build the algorithm logic. The SMy Variable Data Section
groupbox is dynamically updated depending on resources used in the SM Instructions Section groupbox. In the
SMy Instructions Section groupbox, more actions can be taken:
1. Customize an existing state. The single state is composed of:
— state number Sy
— state program relative hexadecimal address (address 0x00 corresponds to CONFIG_A byte in the fixed
data section)

— state type and opcode: user can customize the state using radio buttons and drop-down lists as
described below:

° “RNC” radio button: the state is a RESET/NEXT condition. In this case, two drop-down lists are
shown. The left one is related to the RESET condition while the right one is related to the NEXT
condition;

° “CMD” radio button: the state is a Command. In this case, one drop-down list is shown.
Commands having one or more parameters (automatically displayed by the tool) require the user
to manually configure the parameter values.

- “Add” button is used to insert a new state just before the current one;
- “Remove” button is used to remove the current state.

2. “Add State” button is used to add a new state at the end of the state machine. This button is always
positioned at the bottom of the state machine states;

3. “Import / Export State Machine” buttons are used to import / export the state machine program in .fsm
format. The format .fsm is used to allow the user to build the entire FSM configuration starting from a set
of .fsm state machine programs.

4. “Reset State Machine” button is used to reset the state machine instructions section (only on Ul, not in the
device).

AN5273 - Rev 2 page 57/68

3

ANb5273
Unico GUI

11.1.2

AN5273 - Rev 2

Interrupt tab

The Interrupt tab of the Finite State Machine tool allows the user to check the functionality of the configured
programs at runtime of the program logic. The Ul is composed of two parts as shown in Figure 22.

1. Signal plots: a plot of the accelerometer, gyroscope and interrupt signals is shown here based on enabled
sensors and interrupt configuration;

2. State Machine Interrupt status: in this groupbox, two columns of information are shown:

— agraphic green LED is linked to the corresponding state machine interrupt source bit. By default, the
LED is off. When the corresponding source bit is set to ‘1’, the LED is turned on for ~300 msec;

— the OUT_Sx register value and the long counter register value can be manually read by clicking on the
corresponding “Read” button.

Figure 22. Finite State Machine tool - Interrupt tab

ioa Finite State Machine - O X
State Machine Selection FSM ODR Long Counter Max Value: | 0000 | Converter
|stateMachine 21 | [26Hz *| Long Counter Interrupts: (] vr1 [w2 Float: | 0.000 | Float to Float16

Floati&: | ooo | [Float16 to Floa

huration Interrupt Debug

State Machine Interrupts

[ourst (sch) o0 | mesd)

W ous: @h) [oo

ouT_s3 (aen) | &R
ouT_S4 {4Fh) \E
oUT_S5 (50h) {T
ouT_ss (51h) | &R
ouT 57 (52h) \E
ouT_s8 (53h) {T
ouT_s9 (5am) | &R

ouT_S10 (55h) [oo

ouT_s11 (e [oo

ouT_s12 (57h) \'E
ouT_S13 (58h) \E
oursi4 (s [oo
ouT_s1s (sah) (oo

OUT_S16 (sBh) | oo

i (ash-45h) [0000 [Resd)

page 58/68

ANb5273
Unico GUI

3

1.1.3 Debug tab

The debug tab can be used to inject data into the device in order to check the functionality of the configured
programs.

The UNICO GUI Load/Save tab, shown in the following figure, allows the user to take log files properly formatted
for the data injection procedure: these log files have to contain [LSB] data only (accelerometer and/or gyroscope
depending on user needs and programs logic).

Figure 23. UNICO GUI - Load/Save tab

&7 Unice - X
IH Back | SelectPort: | COMS ¥ Connect 5¥ Disconnect | P start oistop ¥ Exit
iy Info Optins Regsters Regsters2 bedded Reg 1 Reg 2 bedded Adv Page 0 bedded AdvPage 1 Sensor HubRegisters | Load/Save
Bars
E Save Data
=i -Choose the file name: ‘ [Browse... J
Interrupt
B - Check the data you want to save: {Accelerometer) 18 [Acceleration [angle [tnterrupt
Fs (Gyroscope) LsB [Angular Rate
@ [DecisioriTree Resuits
FIFO
-Press Start for logging: Start J [Stop J
d
FIFO
% Load/Save Configuration
L]
Indin.
% - Click Load for loading a configuration from a text fle: [Lead J
FFT
) - Click Save for saving the current configuration to a text fle: [Save]
FFT
2
DecTree
Pedomet.
STMicroelectronics Demonstration kit = STEVAL-MKI197V 1 {LSMEDSOX) Board = ProfiMEMSTool Firmware Version = ¥2.30.3 Unico Version = 7.0.5.0 Beta
The debug tab window is shown in the following figure.
Figure 24. Finite State Machine tool — Debug tab
s2% Finite State Machine - O x
State Machine Selection FSM ODR. Long Counter Max Value: 0000 | Converter
swteMacine 71 | (5Hz | Long Counter Interrupts: [y [z Float: | p.000 |
Fioati6: | pood | | Float16 to Float
1 uraton Interrupt Debug B
__________ o szt | | Pebug Mode: on
S0 OB SINMUX File Loaded: test_debug. txt
T R, ———
§1 0 oxic
Xl avld ezl avidl oXfradkloY radilaz [adklov fadk] mx [G] my [G] mz[g] mv[g]
s2 O0x1D 001 | -0.08 | to1 | woi | [oo | 01 | 001 | 002 | 0 o |
Detected INT
$3 Ox1E Print Results Read FSM Configuration Read OUTS Registers Read INT Registers [1 ‘
54 O0x1F SAMPLE PP RP MASKSEL SIGMED THR3SEL IN_SEL INT OUTS TH1 TH2
57 OxIF 0x1B 0 1 0 10 00 319A(0.175) 3800 (0.500) 319A
58 OxIF 0xB 0 1 0 10 00 319A(0.175) 3800 (0.500) 310A M 3
55 0x20 59 OxIF 0x1B O 1 0 1 0 00 3194 (0.175) 3800 (0.500) 319A
60 OxIF 0B 0 1 0 10 00 319A(0.175) 3800 (0.500) 319A
6 o1 4 NOP | LNTH1 61 OxIF 0x1B 0 1 0 10 00 319A(0.175) 3800 (0.500) 319A1
62 0x20 0B 0 1 0 10 00 319A(0.175) 3800 (0.500) 319A(
63 0x21 0x1B 0 1 0 10 00 319A(0.175) 3800 (0.500) 319A 1
ST 0x22 SRl \ 64 X2l 0B 0 1 0 10 00 319A(0.175) 3800 (0.500) 31941
65 21 0x1B 0 1 0 10 00 319A(0.175) 3800 (0.500) 319A |
8 0x23 07 \ 66 0x21 0B 0 1 0 10 00 319A(0.175) 3800 (0.500) 31941
67 21 0x1B 0 1 0 10 00 319A(0.175) 3800 (0.500) 319A
68 x21 0B 0 1 0 10 00 319A(0.175) 3800 (0.500) 31941
S9 0x24 1 LNTH1 | GNTH2 69 x21 0x1B 0 1 0 1 0 00 319A(0.175) 3800 (0.500) 319A|
70 0x22 0B 0 1 0 1 0 00 319A(0.175) 3800 (0.500) 31941
71 025 0xB 0 1 0 3 0 00 319A(0.175) 3800 (0.500) 319A 1
S SO ‘ 72 B2A 0B 1 1 1 0 0 00 319A(0.175) 3800 (0.500) 319A 1
73 OxIF 0x1B 0 1 0 11 28 319A(0.175) 3800 (0.500) 319A
S 0x26 00 | 74 OxIF Ox1B 0 1 0 10 28 319A(0.175) 3800 (0.500) 319A 1
= 75 OxIF 0x1B 0 1 0 1 0 28 319A(0.175) 3800 (0.500) 319A
76 OxIF 0x1B 0 1 0 1 0 28 319A(0.175) 3800 (0.500) 319A 1
§12 027 SETHE) 7 lmFloas’ 0 10 10 28 319A(0.175) 3800 (0.5000 3191'L|
4 »
$13 0x28 5L - CHANGING FSM CONFIGURATION (IN CONFIG TAB) WILL RESET THE TABLE!
~ - EXTTING FROM DEBUG TAB WILL STOP THE DEBUG MODE!
- SET SENSORS ODR/FSR EQUAL TO LOG ODR/FSR!

The debug tab is mainly composed of three Ul parts:

AN5273 - Rev 2 page 59/68

m ANS5273

Unico GUI

1. State machines flows: the state machine is graphically shown here. When the debug mode is enabled, the
current state is highlighted and it is dynamically updated based on the injected sample and program
behavior.

2. Debug commands: by default, the debug mode is off. When a log file is loaded, the debug mode is
automatically turned on and the user can start to inject data into the device in order to verify the program
functionalities. Injected sample data and the number of detected interrupts are shown here.

3. Output results: after injecting a sample into the device, a new line is added to the table depending on the
“Print Results” checkbox status. Table columns represent the state machine parameters and resources,
while table rows are related to the injected sample. When a parameter or a resource value is changed, the
corresponding cell is highlighted. Finally, it is possible to export the table results in a text file format.

AN5273 - Rev 2 page 60/68

m AN5273

Revision history

Table 54. Document revision history

28-Jan-2019 1 Initial release
01-Feb-2019 2 Updated SINMUX (23h)

AN5273 - Rev 2 page 61/68

m ANS5273

Contents
Contents
1 Finite State Machine (FSM). i e s iianannnnns 2
1.1 Finite State Machine definition. 2
1.2 Finite State Machine in the LSMBDSOX e 3
2 Signal Conditioning bIoCK i e 4
3 LR 1 o o T o 5
3.1 Configuration blocK 6
3141 FSM registers 7
3.1.2 FSM embedded functionregisters. 7
313 FSM embedded advanced features registers 13
3.2 Program bIOCKo 20
3.21 Input Selector block. 20
3.2.2 Code block 20
4 FOM INterrupt. i i it et et 22
5 Fixed Data seCtion....... ..ottt i i s 23
5.1 LoNg COoUNTEr . . .o 24
6 Variable Datasectionccouuiiiiii i i i e 25
6.1 Thresholdso 26
6.2 HY S eresiS . ..o 26
6.3 Masks / temporary Masks 27
6.4 DeltaT, DX, DY, DZ, DV e 28
6.5 TC and timers o 28
6.6 DeCiMatOr. . .o 29
6.7 Previous axis SigNn e 30
6.8 Decision Tree interface. 30
7 Instructions section ... i 31
7.1 Reset/Next conditions. 31
TAA NOP (ON). .o oot e 33
T2 TN e 33
T3 TI2(2N) . e 33

AN5273 - Rev 2 page 62/68

‘ﬁ ANS5273

Contents

TAA TIB(BN) e 33
TA5 T (BN) . o 33
746 GNTHT (BR) .« 34
TAT GNTH2 (BR) © oot e 34
7.8 LNTHT (TN) . oo 34
749 LNTHZ2 (BN) . v v ve e et e e e e e e e e e e e 34
7440 GLTHT (ON) . o o 34
TAAT LLTHT (AR . o 35
7442 GRTHT (BR) « oot e e e e e e e 35
7413 LRTHA (Ch). .o 35
TAAL PZC (D). e e e e 35
TAA5 NZC (BR). oo 35
7446 CHKDT (FR) .« o vv e et e e e e e e e 36
7.2 COMMaANGS. . ..ot 37
7.2 STOP (00N). . . v v oo e e e e e e e e 38
7.2.2 CONT (1N). oot e 38
7.2.3 CONTREL (22h) . . oo e e e e e 39
724 SRP (B3N). ettt 39
7.25 CRP (A4N). . oo 39
7.26 SETP (B5N) . . v v oot e e e 39
727 SELMA (BBN) . ..o 39
7.28 SELMB (TTN) .« oo oot e e 39
7.29 SELMC (88N) . . oo oot e et e 40
7210 OUTC (99h) . .o e e 40
7.241 STHRT (AAN) © o oo e e 40
7.212 STHRZ (BBh) 40
7.213 SELTHRT (CCR) . o o oottt et e e e e e e e e e e e e 40
7.214 SELTHR3 (DDh) . . .o e e e 41
7.245 SISW (EEN) .« .o oo et 41
7.216 REL (FFR). oot e e e e 41
7217 SSIGNO (12h) . . oot 41
7.218 SSIGNT (13N) . o oo et e 41

AN5273 - Rev 2 page 63/68

m ANS5273

Contents

7.219 SRTAMO (14h) 41

7.2.20 SRTAM (210) o oo 42

7.2.21 SINMUX (23h). . . oo 42

7.2.22 STIMERSB (24N). . . o oo e 42

7.2.23 STIMERA (31h) . . oo 42

7.2.24 SWAPMSK (32h) . .o 42

7.2.25 INCR(B4N) . oo 43

7226 IMP (A1N) . . oo 43

7.2.27 CANGLE (42h) . ..o 43

7.2.28 SMA (A3h). . . oo 43

7.2.29 SMB (DFN) . . oot 43

7230 SMC (FER) . .o 44

7231 SCTCO (BBR) & . v et et e e e e e e e e 44

7232 SCTCA(TCR) .. 44

7.2.33 UMSKIT (CTR) « oo et e e e e 44

7.2.34 MSKITEQ (EFR) . ..ot 44

7.2.35 MSKIT (FOh) . . .o 44

8 FSM configuration example.o i s 45
9 Startroutine i 48
10 Examples of state machine configurationsc.iiiiiiiiiiin s 49
101 T0ggle . e e 49

L = (o 50

103 Freefall .. o 51

11 Finite State Machine tool. ... e iieneenann s 52
111 UNICO GUILL . . 52
1111 Configurationtab. 54

11.1.2 Interrupttab ... 58

1143 0 Debugtab . ..o 59

ReVISioON NisStory ... i ittt as s na s 61

AN5273 - Rev 2 page 64/68

m ANS5273

List of tables
List of tables
Table 1. FSMregisters 7
Table 2. EMB_FUNC_STATUS_MAINPAGE (35h) register e e 7
Table 3. FSM_STATUS_A_MAINPAGE (36h) register. e e 7
Table 4. FSM_STATUS_B_MAINPAGE (37h) register. e 7
Table 5. Embedded function registers 8
Table 6. EMB_FUNC_EN_B (05h) register e 9
Table 7. EMB_FUNC_INT1 (OAR) registero e e e e e 9
Table 8. FSM_INT1_A (OBh) register e e e e e e 9
Table 9. FSM_INT1_B (0Ch) register e e e e e e e 9
Table 10. EMB_FUNC_INT2 (OEh) registero e e e e e e 10
Table 1. FSM_INT2_A (OFh) register e e e e e e 10
Table 12. FSM_INT2_B (10h) register. e e e e e 10
Table 13. EMB_FUNC_STATUS (12h) register e e e e e 11
Table 14. FSM_STATUS_A (13h) register e e e e e e e 11
Table 15. FSM_STATUS_B (14h) register. e e e 11
Table 16. PAGE_RW (17h) register 11
Table 17. FSM_ENABLE_A (46h) register.o e 12
Table 18. FSM_ENABLE_B (47h) register. oo e e 12
Table 19. FSM_LONG_COUNTERL_L (48h)register. e e e 12
Table 20. FSM_LONG_COUNTER_H (49h) register.o e e e 12
Table 21. FSM_LONG_COUNTER_CLEAR (4Ah) register e e 12
Table 22. FSM_OUTS[1:16] (4Ch - BBh) register e e e e 13
Table 23. EMB_FUNC_ODR_CFG_B (5Fh)register. e e e 13
Table 24. FSMoutputdatarate 13
Table 25. FSM_INIT (B7h) register.o e e e 13
Table 26. FSM embedded advanced features registers. e 14
Table 27. MAG_SENSITIVITY_L (BAh) register. e 15
Table 28. MAG_SENSITIVITY_H (BBh) register. e e e 15
Table 29. MAG_OFFX_L (COR) register oo e e e e e e e e e 15
Table 30. MAG_OFFX_H (Chh) registero e e e e e 15
Table 31. MAG_OFFY_L (C2h) registero e e e e e e 15
Table 32. MAG_OFFY_H (C3h) register e e e e e e 16
Table 33. MAG_OFFZ_L (C4h) register e e e 16
Table 34. MAG_OFFZ_H (CBh) register e e e e e e 16
Table 35. MAG_SI_XX_L (CBh)register e e 16
Table 36. MAG_SI_XX_H (C7h)register. e 16
Table 37. MAG_SI_XY_L (C8h)register e 17
Table 38. MAG_SI_XY_H (COh) register. 17
Table 39. MAG_SI_XZ_L (CAh)register e e 17
Table 40. MAG_SI_XZ_H (CBh) register. e e e 17
Table 41. MAG_SI_YY_L (CCh)register.t e e e e e e e 17
Table 42. MAG_SI_YY_H (CDh) register. o e e 18
Table 43. MAG_SI_YZ_L (CEh)register e 18
Table 44. MAG_SI_YZ_H (CFh)register. e e e 18
Table 45. MAG_SI_ZZ L (DOh) register 18
Table 46. MAG_SI_ZZ H (D1h) register 18
Table 47. FSM_LC_TIMEOUT_L (TAR) register e e e e 19
Table 48. FSM_LC_TIMEOUT_H (7Bh) register. e 19
Table 49. FSM_N_PROG (7Ch) register o e e e e e e 19
Table 50. FSM_START_ADD _L (7TEh) register.o e e e e e 19
Table 51. FSM_START_ADD_H (7Fh) register e e e 19
Table 52. ConditionSs 32

AN5273 - Rev 2 page 65/68

m ANS5273

List of tables

Table 53. Listof commands. 37
Table 54. Documentrevision history 61

ANS5273 - Rev 2 page 66/68

ﬁ ANS5273

List of figures

List of figures

Figure 1. Generic state machine. 2
Figure 2. State machine inthe LSMBDSOX e 3
Figure 3. Signal Conditioning block. 4
Figure 4. FSOM bIOCK . . . oo 5
Figure 5. Program block 20
Figure 6. FSM Programy Code Structure 21
Figure 7. FSM Programy MEemMOIY @rea ot ittt et e e e e e e e e 21
Figure 8. Fixed Data SeCtion 23
Figure 9. Variable Data SeCtion. 25
Figure 10. Single state description 31
Figure 11. FSM configuration example 45
Figure 12. Toggle state machine example 49
Figure 13. Wake-up state machine example 50
Figure 14. Freefall state machine example 51
Figure 15. Running the Finite State Machine tool 53
Figure 16. Finite State Machine tool 53
Figure 17. Finite State Machine tool - Configurationtab. 54
Figure 18. Configuration tab - SMy Status 55
Figure 19. Configuration tab - SMy Fixed Data Section 55
Figure 20. Configuration tab — SM Variable Data Section 56
Figure 21. Configuration tab — SM, Instructions Section 56
Figure 22. Finite State Machine tool - Interrupttab 58
Figure 23. UNICO GUI—Load/Save tab e 59
Figure 24. Finite State Machine tool —Debugtab 59

AN5273 - Rev 2 page 67/68

ﬁ ANS5273

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics — All rights reserved

AN5273 - Rev 2 page 68/68

	1 Finite State Machine (FSM)
	1.1 Finite State Machine definition
	1.2 Finite State Machine in the LSM6DSOX

	2 Signal Conditioning block
	3 FSM block
	3.1 Configuration block
	3.1.1 FSM registers
	3.1.1.1 EMB_FUNC_STATUS_MAINPAGE (35h)
	3.1.1.2 FSM_STATUS_A_MAINPAGE (36h)
	3.1.1.3 FSM_STATUS_B_MAINPAGE (37h)

	3.1.2 FSM embedded function registers
	3.1.2.1 EMB_FUNC_EN_B (05h)
	3.1.2.2 EMB_FUNC_INT1 (0Ah)
	3.1.2.3 FSM_INT1_A (0Bh)
	3.1.2.4 FSM_INT1_B (0Ch)
	3.1.2.5 EMB_FUNC_INT2 (0Eh)
	3.1.2.6 FSM_INT2_A (0Fh)
	3.1.2.7 FSM_INT2_B (10h)
	3.1.2.8 EMB_FUNC_STATUS (12h)
	3.1.2.9 FSM_STATUS_A (13h)
	3.1.2.10 FSM_STATUS_B (14h)
	3.1.2.11 PAGE_RW (17h)
	3.1.2.12 FSM_ENABLE_A (46h)
	3.1.2.13 FSM_ENABLE_B (47h)
	3.1.2.14 FSM_LONG_COUNTER_L (48h) and FSM_LONG_COUNTER_H (49h)
	3.1.2.15 FSM_LONG_COUNTER_CLEAR (4Ah)
	3.1.2.16 FSM_OUTS[1:16] (4Ch - 5Bh)
	3.1.2.17 EMB_FUNC_ODR_CFG_B (5Fh)
	3.1.2.18 FSM_INIT (67h)

	3.1.3 FSM embedded advanced features registers
	3.1.3.1 MAG_SENSITIVITY_L (BAh) and MAG_SENSITIVITY_H (BBh)
	3.1.3.2 MAG_OFFX_L (C0h) and MAG_OFFX_H (C1h)
	3.1.3.3 MAG_OFFY_L (C2h) and MAG_OFFY_H (C3h)
	3.1.3.4 MAG_OFFZ_L (C4h) and MAG_OFFZ_H (C5h)
	3.1.3.5 MAG_SI_XX_L (C6h) and MAG_SI_XX_H (C7h)
	3.1.3.6 MAG_SI_XY_L (C8h) and MAG_SI_XY_H (C9h)
	3.1.3.7 MAG_SI_XZ_L (CAh) and MAG_SI_XZ_H (CBh)
	3.1.3.8 MAG_SI_YY_L (CCh) and MAG_SI_YY_H (CDh)
	3.1.3.9 MAG_SI_YZ_L (CEh) and MAG_SI_YZ_H (CFh)
	3.1.3.10 MAG_SI_ZZ_L (D0h) and MAG_SI_ZZ_H (D1h)
	3.1.3.11 FSM_LC_TIMEOUT_L (7Ah) and FSM_LC_TIMEOUT_H (7Bh)
	3.1.3.12 FSM_PROGRAMS (7Ch)
	3.1.3.13 FSM_START_ADD_L (7Eh) and FSM_START_ADD_H (7Fh)

	3.2 Program block
	3.2.1 Input Selector block
	3.2.2 Code block

	4 FSM Interrupt
	5 Fixed Data section
	5.1 Long Counter

	6 Variable Data section
	6.1 Thresholds
	6.2 Hysteresis
	6.3 Masks / temporary masks
	6.4 DeltaT, DX, DY, DZ, DV
	6.5 TC and timers
	6.6 Decimator
	6.7 Previous axis sign
	6.8 Decision Tree interface

	7 Instructions section
	7.1 Reset/Next conditions
	7.1.1 NOP (0h)
	7.1.2 TI1 (1h)
	7.1.3 TI2 (2h)
	7.1.4 TI3 (3h)
	7.1.5 TI4 (4h)
	7.1.6 GNTH1 (5h)
	7.1.7 GNTH2 (6h)
	7.1.8 LNTH1 (7h)
	7.1.9 LNTH2 (8h)
	7.1.10 GLTH1 (9h)
	7.1.11 LLTH1 (Ah)
	7.1.12 GRTH1 (Bh)
	7.1.13 LRTH1 (Ch)
	7.1.14 PZC (Dh)
	7.1.15 NZC (Eh)
	7.1.16 CHKDT (Fh)

	7.2 Commands
	7.2.1 STOP (00h)
	7.2.2 CONT (11h)
	7.2.3 CONTREL (22h)
	7.2.4 SRP (33h)
	7.2.5 CRP (44h)
	7.2.6 SETP (55h)
	7.2.7 SELMA (66h)
	7.2.8 SELMB (77h)
	7.2.9 SELMC (88h)
	7.2.10 OUTC (99h)
	7.2.11 STHR1 (AAh)
	7.2.12 STHR2 (BBh)
	7.2.13 SELTHR1 (CCh)
	7.2.14 SELTHR3 (DDh)
	7.2.15 SISW (EEh)
	7.2.16 REL (FFh)
	7.2.17 SSIGN0 (12h)
	7.2.18 SSIGN1 (13h)
	7.2.19 SRTAM0 (14h)
	7.2.20 SRTAM1 (21h)
	7.2.21 SINMUX (23h)
	7.2.22 STIMER3 (24h)
	7.2.23 STIMER4 (31h)
	7.2.24 SWAPMSK (32h)
	7.2.25 INCR (34h)
	7.2.26 JMP (41h)
	7.2.27 CANGLE (42h)
	7.2.28 SMA (43h)
	7.2.29 SMB (DFh)
	7.2.30 SMC (FEh)
	7.2.31 SCTC0 (5Bh)
	7.2.32 SCTC1 (7Ch)
	7.2.33 UMSKIT (C7h)
	7.2.34 MSKITEQ (EFh)
	7.2.35 MSKIT (F5h)

	8 FSM configuration example
	9 Start routine
	10 Examples of state machine configurations
	10.1 Toggle
	10.2 Wake-up
	10.3 Freefall

	11 Finite State Machine tool
	11.1 Unico GUI
	11.1.1 Configuration tab
	11.1.1.1 SMx Status
	11.1.1.2 SMx Fixed Data Section
	11.1.1.3 SMx Variable Data Section
	11.1.1.4 SMx Instructions Section

	11.1.2 Interrupt tab
	11.1.3 Debug tab

	Revision history

